期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于LightGBM改进的GBDT短期负荷预测研究 被引量:35
1
作者 王华勇 杨超 唐华 《自动化仪表》 CAS 2018年第9期76-78,82,共4页
精确的负荷预测对电网的供需平衡以及电力市场的平稳运行具有非常重要的意义。梯度提升决策树(GBDT)算法在短期负荷预测中具有很好的应用前景。Light GBM是一个梯度提升框架。该框架训练效率更快、使用内存更低、准确率更高。除此之外,... 精确的负荷预测对电网的供需平衡以及电力市场的平稳运行具有非常重要的意义。梯度提升决策树(GBDT)算法在短期负荷预测中具有很好的应用前景。Light GBM是一个梯度提升框架。该框架训练效率更快、使用内存更低、准确率更高。除此之外,它还支持并行学习,可以处理规模庞大的数据。对GBDT的计算流程及其特征进行了详细的分析,并指出Light GBM的引入可以使GBDT能够更加高效地处理更多的样本。通过histogram决策树算法寻找决策树的最优分割点,可达到降低内存的目的;通过增加决策树最大深度的方式限制过拟合,可提高预测精度;通过直方图作差,可提高运行速度。基于以上三种改进方式,提出了基于Light GBM的改进GBDT算法,并将其应用于短期负荷预测。根据贵州省某县的实际数据构造了相应的算例,验证了所提方法的有效性,证明了该算法具有更高的计算效率以及计算精度。基于Light GBM的改进GBDT算法不仅可以应用于负荷预测,而且在数据挖掘领域也具有良好的应用前景。 展开更多
关键词 梯度提升决策树 短期负荷预测 light GBM HISTOGRAM Leaf-wise 预测精度 数据挖掘
下载PDF
一种基于轨迹数据的红绿灯位置检测方法
2
作者 赵肄江 方辰昱 廖祝华 《测绘地理信息》 CSCD 2024年第2期122-130,共9页
红绿灯位置是道路上行人和车辆的交会点,极大影响着道路结构和交通运行,在城市路网中起着重要的枢纽作用。针对目前红绿灯位置检测方法准确率不够高、覆盖面区域不完整等问题,提出了一种基于轨迹数据的交通灯位置检测方法。该方法基于聚... 红绿灯位置是道路上行人和车辆的交会点,极大影响着道路结构和交通运行,在城市路网中起着重要的枢纽作用。针对目前红绿灯位置检测方法准确率不够高、覆盖面区域不完整等问题,提出了一种基于轨迹数据的交通灯位置检测方法。该方法基于聚类-合并-分类-合并的四级模型,首先从清理过的轨迹数据中提取隐含的车辆行驶特征,再采用具有噪声的基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)方法得到转向和停驻两类聚类中心,对这两类聚类中心进行合并,获得红绿灯位置的候选位置;根据候选位置一定范围内的轨迹点提取该区域的车流行驶特征,然后采用梯度提升决策树(gradient boosting decision tree,GBDT)算法进行分类,最后将候选位置的正样本融合,以检测红绿灯位置。采用成都市浮动车GPS轨迹数据进行实验,检测结果的F1分数为0.947,效果优于常规的机器学习方法。实验结果表明,基于GPS轨迹数据,采用提出的四层模型能有效检测出红绿灯的位置,该模型可被用于城市大范围红绿灯位置信息的快速获取和更新。 展开更多
关键词 城市交通 浮动车 道路路网 时空特征 红绿灯位置检测 GPS轨迹 梯度提升决策树(gradient boosting decision tree GBDT) DBSCAN
原文传递
基于混合模型的广告转化率问题研究 被引量:4
3
作者 李雄飞 周晋男 张小利 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第7期942-947,共6页
现有广告转化率预估模型缺乏对深层特征间相互作用的研究,针对这一问题提出了一种新的混合模型.通过高效的梯度提升机(light gradient boosting machine,LightGBM)模型提取高阶组合特征,并结合基于区域的因子分解机(field-aware factori... 现有广告转化率预估模型缺乏对深层特征间相互作用的研究,针对这一问题提出了一种新的混合模型.通过高效的梯度提升机(light gradient boosting machine,LightGBM)模型提取高阶组合特征,并结合基于区域的因子分解机(field-aware factorization machines,FFM)模型有效处理稀疏数据的优点进行转化率的预估.为了验证模型的有效性和泛化能力,在两个数据集上讨论了参数对预估结果的影响,并将模型与其他模型进行对比实验.实验结果表明提出的混合模型的预估结果更准确. 展开更多
关键词 转化率预估 高效的梯度提升树 基于区域的因子分解机 混合模型 高阶组合特征
下载PDF
基于LightGBM的夜经济用户级短期负荷概率预测方法 被引量:1
4
作者 周文涛 魏光涛 +2 位作者 王泽黎 张晓晨 任立志 《数据与计算发展前沿》 CSCD 2023年第3期160-168,共9页
[目的]为了度量夜经济中用户级短期负荷的不确定性,基于LightGBM(Light Gradient Boosting Machine)和KDE(Kernel Density Estimation)方法,本文设计了一种夜经济用户级短期负荷概率预测模型框架和预测方法。[方法]首先,利用LightGBM对... [目的]为了度量夜经济中用户级短期负荷的不确定性,基于LightGBM(Light Gradient Boosting Machine)和KDE(Kernel Density Estimation)方法,本文设计了一种夜经济用户级短期负荷概率预测模型框架和预测方法。[方法]首先,利用LightGBM对待预测用户的历史负荷与影响因素(如天气、日类型等)进行建模。然后,使用该模型预测用户的未来短期负荷,并将LightGBM模型所包含的树的输出作为概率预测的输入,利用核密度估计方法计算该用户未来短期负荷的概率密度及预测区间。[结论]最后利用北方某城市的多个夜经济用户真实负荷数据进行了实验验证,实验结果表明本方法预测结果准确,鲁棒性高,且对夜经济多类用户均适用。 展开更多
关键词 用户级负荷预测 负荷概率预测 lightGBM 梯度提升决策树 核密度估计
下载PDF
一种基于lightGBM框架改进的GBDT风力发电机叶片开裂预测方法 被引量:5
5
作者 刘钰宸 安静 《应用技术学报》 2020年第1期63-70,共8页
风力发电机叶片开裂直接影响风力发电机运行,采用梯度提升决策树算法与基于lightGBM框架改进的梯度提升决策树算法对风力发电机叶片开裂进行预测。对比分析了预测准确度与可行性。基于lightGBM改进的梯度提升决策树算法分析的风力发电... 风力发电机叶片开裂直接影响风力发电机运行,采用梯度提升决策树算法与基于lightGBM框架改进的梯度提升决策树算法对风力发电机叶片开裂进行预测。对比分析了预测准确度与可行性。基于lightGBM改进的梯度提升决策树算法分析的风力发电机运行数据得出的预测结果优于梯度提升决策树算法,且对于风力发电机叶片开裂预测准确度较高,并具有实用价值。同时该算法能够大幅降低样本中的无效数据,减少计算量。其独立特征合并能够使得划分点特征数量降低,提高风力发电机叶片开裂预测的准确性。最后,风力发电机叶片开裂预测实验结果表明,基于lightGBM改进的梯度提升决策树算法取得了更好的预测结果,计算量更小且能够准确预测风力发电机叶片开裂故障。 展开更多
关键词 lightGBM 梯度提升决策树 皮尔森相关性系数 风力发电机 叶片开裂预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部