Metasurfaces,with extremely exotic capabilities to manipulate electromagnetic(EM)waves,have derived a plethora of advanced metadevices with intriguing functionalities.Tremendous endeavors have been mainly devoted to t...Metasurfaces,with extremely exotic capabilities to manipulate electromagnetic(EM)waves,have derived a plethora of advanced metadevices with intriguing functionalities.Tremendous endeavors have been mainly devoted to the static metasurfaces and metadevices,where the functionalities cannot be actively tuned in situ post-fabrication.Due to the in-trinsic advantage of active tunability by external stimulus,graphene has been successively demonstrated as a favorable candidate to empower metasurfaces with remarkably dynamic tunability,and their recent advances are propelling the EM wave manipulations to a new height:from static to dynamic.Here,we review the recent progress on dynamic metasur-faces and metadevices enabled by graphene with the focus on electrically-controlled dynamic manipulation of the EM waves covering the mid-infrared,terahertz,and microwave regimes.The fundamentals of graphene,including basic ma-terial properties and plasmons,are first discussed.Then,graphene-empowered dynamic metasurfaces and met-adevices are divided into two categories,i.e.,metasurfaces with building blocks of structured graphene and hybrid metasurfaces integrated with graphene,and their recent advances in dynamic spectrum manipulation,wavefront shap-ing,polarization control,and frequency conversion in near/far fields and global/local ways are elaborated.In the end,we summarize the progress,outline the remaining challenges,and prospect the potential future developments.展开更多
In this review, the principle and the optical methods for light-field display are introduced. The light-field display is divided into three categories, including the layer-based method, projector-based method, and int...In this review, the principle and the optical methods for light-field display are introduced. The light-field display is divided into three categories, including the layer-based method, projector-based method, and integral imaging method. The principle, characteristic, history, and advanced research results of each method are also reviewed.The advantages of light-field display are discussed by comparing it with other display technologies including binocular stereoscopic display, volumetric three-dimensional display, and holographic display.展开更多
Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerf...Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space.Besides the high Q factors enabled by the confined properties,many hidden topological characteristics were discovered in optical BICs.Especially in periodic structures with well-defined wave vectors,optical BICs were discovered to carry topological charges in momentum space,underlying many unique physical properties.Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light.BICs have enabled many novel discoveries in light-matter interactions and spin-orbit interactions of light,and BIC applications in lasing and sensing have also been well explored with many advantages.In this paper,we review recent developments of optical BICs in periodic structures,including the physical mechanisms of BICs,explored effects enabled by BICs,and applications of BICs.In the outlook part,we provide a perspective on future developments for BICs.展开更多
基金supported by the National Key R&D Program of China (2017YFA0303800)the National Natural Science Foundation of China (61805277, 11634010, 91950207, 11974283, 11774290)+1 种基金the Fundamental Research Funds for the Central Universities (3102017AX009, 3102019PY002, 3102019JC008)the Natural Science Basic Research Program of Shaanxi (2019JQ-447, 2020JM-130)
文摘Metasurfaces,with extremely exotic capabilities to manipulate electromagnetic(EM)waves,have derived a plethora of advanced metadevices with intriguing functionalities.Tremendous endeavors have been mainly devoted to the static metasurfaces and metadevices,where the functionalities cannot be actively tuned in situ post-fabrication.Due to the in-trinsic advantage of active tunability by external stimulus,graphene has been successively demonstrated as a favorable candidate to empower metasurfaces with remarkably dynamic tunability,and their recent advances are propelling the EM wave manipulations to a new height:from static to dynamic.Here,we review the recent progress on dynamic metasur-faces and metadevices enabled by graphene with the focus on electrically-controlled dynamic manipulation of the EM waves covering the mid-infrared,terahertz,and microwave regimes.The fundamentals of graphene,including basic ma-terial properties and plasmons,are first discussed.Then,graphene-empowered dynamic metasurfaces and met-adevices are divided into two categories,i.e.,metasurfaces with building blocks of structured graphene and hybrid metasurfaces integrated with graphene,and their recent advances in dynamic spectrum manipulation,wavefront shap-ing,polarization control,and frequency conversion in near/far fields and global/local ways are elaborated.In the end,we summarize the progress,outline the remaining challenges,and prospect the potential future developments.
基金supported financially by the National Natural Science Foundation of China(Nos.61574003and 61774010)
文摘In this review, the principle and the optical methods for light-field display are introduced. The light-field display is divided into three categories, including the layer-based method, projector-based method, and integral imaging method. The principle, characteristic, history, and advanced research results of each method are also reviewed.The advantages of light-field display are discussed by comparing it with other display technologies including binocular stereoscopic display, volumetric three-dimensional display, and holographic display.
基金supported by the National Natural Science Foundation of China(Nos.12234007,12221004,12321161645,62325501,62135001,12074049,and 12147102)the National Key R and D Program of China(Nos.2022YFA1404804,2021YFA1400603,and 2023YFA1406900)+4 种基金the Major Program of National Natural Science Foundation of China(Nos.T2394480 and T2394481)the Science and Technology Commission of Shanghai Municipality(Nos.22142200400,21DZ1101500,2019SHZDZX01,and 23DZ2260100)the Fundamental Research Funds for the Central Universities(No.2022CDJQY-007)supported by the China National Postdoctoral Program for Innovative Talents(No.BX20230079)the China Postdoctoral Science Foundation(No.2023M740721).
文摘Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space.Besides the high Q factors enabled by the confined properties,many hidden topological characteristics were discovered in optical BICs.Especially in periodic structures with well-defined wave vectors,optical BICs were discovered to carry topological charges in momentum space,underlying many unique physical properties.Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light.BICs have enabled many novel discoveries in light-matter interactions and spin-orbit interactions of light,and BIC applications in lasing and sensing have also been well explored with many advantages.In this paper,we review recent developments of optical BICs in periodic structures,including the physical mechanisms of BICs,explored effects enabled by BICs,and applications of BICs.In the outlook part,we provide a perspective on future developments for BICs.