The high angle of attack characteristics play an important role in the aerodynamic performances of the hypersonic space vehicle. The three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the two-equat...The high angle of attack characteristics play an important role in the aerodynamic performances of the hypersonic space vehicle. The three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the two-equation RNG k-? turbulence model have been employed to investigate the influence of the high angle of attack on the lift-to-drag ratio and the flow field characteristics of the hypersonic space vehicle, and the contributions of each component to the aerodynamic forces of the vehicle have been discussed as well. At the same time, in order to validate the numerical method, the predicted results have been compared with the available experimental data of a hypersonic slender vehicle, and the grid independency has been analyzed. The obtained results show that the predicted lift-to-drag ratio and pitching moment coefficient show very good agreement with the experimental data in the open literature, and the grid system makes only a slight difference to the numerical results. There exists an optimal angle of attack for the aerodynamic performance of the hypersonic space vehicle, and its value is 20°. When the angle of attack is 20°, the high pressure does not leak from around the leading edge to the upper surface. With the further increasing of the angle of attack, the high pressure spreads from the wing tips to the central area of the vehicle, and overflows from the leading edge again. Further, the head plays an important role in the drag performance of the vehicle, and the lift percentage of the flaperon is larger than that of the rudderevator. This illustrates that the optimization of the flaperon configuration is a great work for the improvement of the aerodynamic performance of the hypersonic space vehicle, especially for a high lift-to-drag ratio.展开更多
In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The...In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.展开更多
基金supported by the Science Foundation of the National University of Defense Technology (Grant No. JC11-01-02)National Natural Science Foundation of China (Grant Nos. 90816027, 61004094)
文摘The high angle of attack characteristics play an important role in the aerodynamic performances of the hypersonic space vehicle. The three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the two-equation RNG k-? turbulence model have been employed to investigate the influence of the high angle of attack on the lift-to-drag ratio and the flow field characteristics of the hypersonic space vehicle, and the contributions of each component to the aerodynamic forces of the vehicle have been discussed as well. At the same time, in order to validate the numerical method, the predicted results have been compared with the available experimental data of a hypersonic slender vehicle, and the grid independency has been analyzed. The obtained results show that the predicted lift-to-drag ratio and pitching moment coefficient show very good agreement with the experimental data in the open literature, and the grid system makes only a slight difference to the numerical results. There exists an optimal angle of attack for the aerodynamic performance of the hypersonic space vehicle, and its value is 20°. When the angle of attack is 20°, the high pressure does not leak from around the leading edge to the upper surface. With the further increasing of the angle of attack, the high pressure spreads from the wing tips to the central area of the vehicle, and overflows from the leading edge again. Further, the head plays an important role in the drag performance of the vehicle, and the lift percentage of the flaperon is larger than that of the rudderevator. This illustrates that the optimization of the flaperon configuration is a great work for the improvement of the aerodynamic performance of the hypersonic space vehicle, especially for a high lift-to-drag ratio.
文摘In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.