期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A highly sensitive multiple-mode optical thermometer designed in Eu^(2+/3+)and Li^(+)co-doped polymorphism compound LaSc_(3)(BO_(3))_(4)
1
作者 Nan Yang Zhuo Li +4 位作者 Tingxia Zhou Ziwang Zhang Wen Shi Yexiang Tong Jianxin Shi 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期821-833,共13页
Noncontact optical thermometers have attracted widespread attention,but existing problems such as single-mode and low-sensitivity thermometers still urgently need to be solved.Herein,a novel multiple-mode thermometer ... Noncontact optical thermometers have attracted widespread attention,but existing problems such as single-mode and low-sensitivity thermometers still urgently need to be solved.Herein,a novel multiple-mode thermometer was designed for the polymorphism LaSc_(3)(BO_(3))_(4):Eu^(2+/3+),Li^(+).X-ray diffraction(XRD)patterns revealed a slight transition betweenα-andβ-phases with the concentrations of the dopants,which is further proved by structure refinements and first-principles calculations.The coexistence of Eu^(2+)and Eu^(3+)in the phosphors and their relative percentages were confirmed by X-ray absorption near-edge structure(XANES)spectra.Benefiting from appropriate emissions from Eu^(2+)and Eu^(3+)without obvious energy transfer and their opposite changing trends with temperatures under 307 nm excitation,a triple-mode optical thermometer is obtained for this material within the temperature range of 150–450 K.The highest sensitivities of 27.65,14.05,and 7.68%·K^(−1)are achieved based on two fluorescence intensity ratio(FIR)modes of Eu^(2+)and Eu^(3+)(5d–4f/^(5)D_(0)–^(7)F_(2,4))and the fluorescence lifetime(FL)mode of Eu^(2+),respectively.To the best of our knowledge,the former is almost the highest in Eu^(2+)and Eu^(3+)co-doped thermometers.These results indicate that this material may be used as an excellent multiple-mode optical thermometer. 展开更多
关键词 phase transition europium(Eu)ions multiple-mode optical thermometer thermal quenching properties fluorescence intensity ratio(FIR) fluorescence lifetime(fl)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部