Noncontact optical thermometers have attracted widespread attention,but existing problems such as single-mode and low-sensitivity thermometers still urgently need to be solved.Herein,a novel multiple-mode thermometer ...Noncontact optical thermometers have attracted widespread attention,but existing problems such as single-mode and low-sensitivity thermometers still urgently need to be solved.Herein,a novel multiple-mode thermometer was designed for the polymorphism LaSc_(3)(BO_(3))_(4):Eu^(2+/3+),Li^(+).X-ray diffraction(XRD)patterns revealed a slight transition betweenα-andβ-phases with the concentrations of the dopants,which is further proved by structure refinements and first-principles calculations.The coexistence of Eu^(2+)and Eu^(3+)in the phosphors and their relative percentages were confirmed by X-ray absorption near-edge structure(XANES)spectra.Benefiting from appropriate emissions from Eu^(2+)and Eu^(3+)without obvious energy transfer and their opposite changing trends with temperatures under 307 nm excitation,a triple-mode optical thermometer is obtained for this material within the temperature range of 150–450 K.The highest sensitivities of 27.65,14.05,and 7.68%·K^(−1)are achieved based on two fluorescence intensity ratio(FIR)modes of Eu^(2+)and Eu^(3+)(5d–4f/^(5)D_(0)–^(7)F_(2,4))and the fluorescence lifetime(FL)mode of Eu^(2+),respectively.To the best of our knowledge,the former is almost the highest in Eu^(2+)and Eu^(3+)co-doped thermometers.These results indicate that this material may be used as an excellent multiple-mode optical thermometer.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51972347 and 21771195).
文摘Noncontact optical thermometers have attracted widespread attention,but existing problems such as single-mode and low-sensitivity thermometers still urgently need to be solved.Herein,a novel multiple-mode thermometer was designed for the polymorphism LaSc_(3)(BO_(3))_(4):Eu^(2+/3+),Li^(+).X-ray diffraction(XRD)patterns revealed a slight transition betweenα-andβ-phases with the concentrations of the dopants,which is further proved by structure refinements and first-principles calculations.The coexistence of Eu^(2+)and Eu^(3+)in the phosphors and their relative percentages were confirmed by X-ray absorption near-edge structure(XANES)spectra.Benefiting from appropriate emissions from Eu^(2+)and Eu^(3+)without obvious energy transfer and their opposite changing trends with temperatures under 307 nm excitation,a triple-mode optical thermometer is obtained for this material within the temperature range of 150–450 K.The highest sensitivities of 27.65,14.05,and 7.68%·K^(−1)are achieved based on two fluorescence intensity ratio(FIR)modes of Eu^(2+)and Eu^(3+)(5d–4f/^(5)D_(0)–^(7)F_(2,4))and the fluorescence lifetime(FL)mode of Eu^(2+),respectively.To the best of our knowledge,the former is almost the highest in Eu^(2+)and Eu^(3+)co-doped thermometers.These results indicate that this material may be used as an excellent multiple-mode optical thermometer.