Energy resources have environmental impact through their entire lifecycle. The evaluation of the environmental impacts of the energy lifecycle can contribute to decision making regarding energy manage- ment. In this p...Energy resources have environmental impact through their entire lifecycle. The evaluation of the environmental impacts of the energy lifecycle can contribute to decision making regarding energy manage- ment. In this paper, the lifecycle assessment (LCA) method is introduced to calculate the environmental impact loads of different types of energy resources (including coal, oil, natural gas, and electricity) used in urban regions. The scope of LCA includes the production, transportation, and consumption processes. The pollutant emission inventory is listed, and the environmental impact loads are acquired through the calculation of environmental impact potentials, normalization, and weighted assessment. The evaluation method is applied to Beijing, China, revealing that photochemical oxidant formation and acidification are the primary impact factors in the lifecycle of all energy resources and that the total environmental impact load increased steadily from 132.69 million person equivalents (PE) in 1996 to 208.97 million PE in 2010. Among the energy types, coal contributes most to the environmental impact, while the impacts caused by oil, natural gas, and electricity have been growing. The evaluation of the environmental impact of the urban energy lifecycle is useful for regulating energy structures and reducing pollution, which could help achieve sustainable energetic and environmental development.展开更多
文摘Energy resources have environmental impact through their entire lifecycle. The evaluation of the environmental impacts of the energy lifecycle can contribute to decision making regarding energy manage- ment. In this paper, the lifecycle assessment (LCA) method is introduced to calculate the environmental impact loads of different types of energy resources (including coal, oil, natural gas, and electricity) used in urban regions. The scope of LCA includes the production, transportation, and consumption processes. The pollutant emission inventory is listed, and the environmental impact loads are acquired through the calculation of environmental impact potentials, normalization, and weighted assessment. The evaluation method is applied to Beijing, China, revealing that photochemical oxidant formation and acidification are the primary impact factors in the lifecycle of all energy resources and that the total environmental impact load increased steadily from 132.69 million person equivalents (PE) in 1996 to 208.97 million PE in 2010. Among the energy types, coal contributes most to the environmental impact, while the impacts caused by oil, natural gas, and electricity have been growing. The evaluation of the environmental impact of the urban energy lifecycle is useful for regulating energy structures and reducing pollution, which could help achieve sustainable energetic and environmental development.