This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set ...This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set methods are outlined and two violent sloshing cases are considered. The computed results are compared with the corresponding experimental data for validation. The impact pressure and the deformations of free surface induced by sloshing are comparatively analyzed, and are in good agreement with experimental ones. Results show that both the MPS and level-set methods are good tools for simulation of violent sloshing flows. However, the second pressure peaks as well as breaking and splashing of free surface by the MPS method are captured better than by the level-set method.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51379125,51411130131 and 11272120)the National Key Basic Research Development of China(973 Program,Grant No.2013CB036103)+1 种基金the High Te-chnology of Marine Research Project of the Ministry of Indu-stry and the Information Technology of Chinathe Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(Grant No.2013022)
文摘This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set methods are outlined and two violent sloshing cases are considered. The computed results are compared with the corresponding experimental data for validation. The impact pressure and the deformations of free surface induced by sloshing are comparatively analyzed, and are in good agreement with experimental ones. Results show that both the MPS and level-set methods are good tools for simulation of violent sloshing flows. However, the second pressure peaks as well as breaking and splashing of free surface by the MPS method are captured better than by the level-set method.