期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
分布式三环网络传输延迟 被引量:10
1
作者 侯新民 王天明 《大连理工大学学报》 CAS CSCD 北大核心 2002年第1期9-12,共4页
分布式三环网络是至少具有一个环结构的网络 .利用层图模型 ,首先用整数分拆的方法重新给出了一般环网络直径的上界 ,重点研究了三环网络 ,给出其直径的上界 ,并给出 N不太大时 ,三环网络取得最优的一个条件 .
关键词 环网络 层图模型 分布式三环网络 计算机局域网 传输延迟 CAYLEY图
下载PDF
Knowledge enhanced graph inference network based entity-relation extraction and knowledge graph construction for industrial domain
2
作者 Zhulin HAN Jian WANG 《Frontiers of Engineering Management》 CSCD 2024年第1期143-158,共16页
With the escalating complexity in production scenarios, vast amounts of production information are retained within enterprises in the industrial domain. Probing questions of how to meticulously excavate value from com... With the escalating complexity in production scenarios, vast amounts of production information are retained within enterprises in the industrial domain. Probing questions of how to meticulously excavate value from complex document information and establish coherent information links arise. In this work, we present a framework for knowledge graph construction in the industrial domain, predicated on knowledge-enhanced document-level entity and relation extraction. This approach alleviates the shortage of annotated data in the industrial domain and models the interplay of industrial documents. To augment the accuracy of named entity recognition, domain-specific knowledge is incorporated into the initialization of the word embedding matrix within the bidirectional long short-term memory conditional random field (BiLSTM-CRF) framework. For relation extraction, this paper introduces the knowledge-enhanced graph inference (KEGI) network, a pioneering method designed for long paragraphs in the industrial domain. This method discerns intricate interactions among entities by constructing a document graph and innovatively integrates knowledge representation into both node construction and path inference through TransR. On the application stratum, BiLSTM-CRF and KEGI are utilized to craft a knowledge graph from a knowledge representation model and Chinese fault reports for a steel production line, specifically SPOnto and SPFRDoc. The F1 value for entity and relation extraction has been enhanced by 2% to 6%. The quality of the extracted knowledge graph complies with the requirements of real-world production environment applications. The results demonstrate that KEGI can profoundly delve into production reports, extracting a wealth of knowledge and patterns, thereby providing a comprehensive solution for production management. 展开更多
关键词 knowledge graph construction INDUSTRIAL BiLSTM-CRF document-level relation extraction graph inference
原文传递
Aspect-Level Sentiment Analysis Based on Deep Learning
3
作者 Mengqi Zhang Jiazhao Chai +2 位作者 Jianxiang Cao Jialing Ji Tong Yi 《Computers, Materials & Continua》 SCIE EI 2024年第3期3743-3762,共20页
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr... In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies. 展开更多
关键词 Aspect-level sentiment analysis deep learning graph convolutional neural network user features syntactic dependency tree
下载PDF
排课问题的数学模型 被引量:6
4
作者 崔妍 王权 +1 位作者 王康 车玉军 《沈阳工程学院学报(自然科学版)》 2016年第3期276-278,288,共4页
对适合于计算机编程的排课问题的数学模型进行了初步的探索,应用抽象代数中的cartison理论和图论中的二部图理论对排课资源进行合理的抽象,最终建立了两种排课问题的数学模型。针对高校排课系统的现状,将学生、课程、教师、教室4个集合... 对适合于计算机编程的排课问题的数学模型进行了初步的探索,应用抽象代数中的cartison理论和图论中的二部图理论对排课资源进行合理的抽象,最终建立了两种排课问题的数学模型。针对高校排课系统的现状,将学生、课程、教师、教室4个集合进行了配对,利用层次扫描的方法,成功地解决了排课中的撞课问题。 展开更多
关键词 cartesian积 层次扫描 边着色 二部图
下载PDF
Hausdorff measures of the image, graph and level set of bifractional Brownian motion 被引量:4
5
作者 LUAN NaNa School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China 《Science China Mathematics》 SCIE 2010年第11期2973-2992,共20页
Let BH,K = {BH,K(t), t ∈ R+} be a bifractional Brownian motion in Rd. This process is a selfsimilar Gaussian process depending on two parameters H and K and it constitutes a natural generalization of fractional Brown... Let BH,K = {BH,K(t), t ∈ R+} be a bifractional Brownian motion in Rd. This process is a selfsimilar Gaussian process depending on two parameters H and K and it constitutes a natural generalization of fractional Brownian motion (which is obtained for K = 1). The exact Hausdorff measures of the image, graph and the level set of BH,K are investigated. The results extend the corresponding results proved by Talagrand and Xiao for fractional Brownian motion. 展开更多
关键词 bifractional BROWNIAN motion SELF-SIMILAR Gaussian processes IMAGE graph level set local time HAUSDORFF dimension HAUSDORFF measure
原文传递
满足非重叠条件的带有通配符序列模式挖掘 被引量:5
6
作者 谢飞 强继朋 《小型微型计算机系统》 CSCD 北大核心 2017年第5期956-960,共5页
很多应用领域产生大量的序列数据,例如:基因序列,超市购买记录,股市交易数据,文本序列等.如何从这些序列数据中挖掘具有重要价值的模式已成为序列模式挖掘研究的主要任务.本文研究带有通配符的序列模式挖掘问题,给定支持度阈值和间隔约... 很多应用领域产生大量的序列数据,例如:基因序列,超市购买记录,股市交易数据,文本序列等.如何从这些序列数据中挖掘具有重要价值的模式已成为序列模式挖掘研究的主要任务.本文研究带有通配符的序列模式挖掘问题,给定支持度阈值和间隔约束,从序列数据库中挖掘所有出现次数不小于给定支持度阈值的频繁序列模式,模式中任意两个相邻元素在序列中的出现位置满足用户定义的间隔约束.本文设计一种基于层次图的带有通配符序列模式挖掘算法PMLG,利用层次图结构在多项式时间和空间复杂度内构建和存储模式在序列中满足间隔约束的所有出现位置,采用深度优先搜索策略对图进行遍历,计算模式的支持度,其中模式的任意两次出现的相同位置都不共享序列中同一位置的字符,即满足非重叠出现.在生物DNA序列上的实验表明,PMLG比相关的序列模式挖掘算法具有更好的时间性能和完备性. 展开更多
关键词 序列模式 通配符 层次图 非重叠出现
下载PDF
九连山常绿阔叶林小流域的流出特性 被引量:4
7
作者 李昌华 福岛义宏 铃木雅一 《资源科学》 CSSCI CSCD 北大核心 2001年第z1期36-57,共12页
用量水堰法研究了九连山常绿阔叶林小流域的流出特性。3个小流域的特性是相似的。年流量(Q)随年降水量(P)的增多而增加,Q/P 为38.3%~64.6%。P-Q 的差数在718mm~1125mm 之间,大体上是稳定的。根据流量曲线推定,小流域的滞容水能力在流... 用量水堰法研究了九连山常绿阔叶林小流域的流出特性。3个小流域的特性是相似的。年流量(Q)随年降水量(P)的增多而增加,Q/P 为38.3%~64.6%。P-Q 的差数在718mm~1125mm 之间,大体上是稳定的。根据流量曲线推定,小流域的滞容水能力在流量水平0.04mm/h~2mm/h 之间不少于255mm~285mm。在雨季观测到的暴雨最大流量水平为8.9mm/h。仅在雨季骤性暴雨时才可能产生小的表面流出峰,其流量约占暴雨雨量的1%~2%。从10月至翌年1月共4个月的旱季流量合计一般在124mm~164mm 之间,基本上是稳定的。旱季流出主要是深层的基底(地下水)流出,因而与旱季的降水量无明显关系。 展开更多
关键词 流出特性 流量水平 流量曲线 暴雨流出 旱季流出
全文增补中
ROBUSTNESS OF EQUILIBRIA IN THE GRAPH MODEL FOR CONFLICT RESOLUTION 被引量:3
8
作者 Yasser T.Matbouli D.Marc Kilgour Keith W.Hipel 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2015年第4期450-465,共16页
A novel approach for assessing the robustness of an equilibrium in conflict resolution is presented. Roughly, an equilibrium is robust if it is resilient, or resistant to deviation. Robustness assessment is based on a... A novel approach for assessing the robustness of an equilibrium in conflict resolution is presented. Roughly, an equilibrium is robust if it is resilient, or resistant to deviation. Robustness assessment is based on a new concept called Level of Freedom, which evaluates the relative freedom of a decision maker to escape an equilibrium. Resolutions of a conflict can be affected by changes in decision makers' preferences, which may destabilize an equilibrium, causing the conflict to evolve. Hence, a conflict may become long-term and thereby continue to evolve, even after reaching an equilibrium. The new robustness measure is used to rank equilibria based on robustness, to facilitate distinguishing equiiibria that are relatively sustainable. An absolutely robust equilibrium is a special case in which the level of freedom is at an absolute minimum for each individual stability definition. 展开更多
关键词 ROBUSTNESS EQUILIBRIA level of freedom conflict evolution graph model
原文传递
An effective multi-level algorithm based on ant colony optimization for graph bipartitioning 被引量:3
9
作者 冷明 郁松年 +1 位作者 丁旺 郭强 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期426-432,共7页
Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph... Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph is proposed. During its coarsening phase, an improved matching approach based on the global information of the graph core is developed with its guidance function. During the refinement phase, the vertex gain is exploited as ant's heuristic information and a positive feedback method based on pheromone trails is used to find the global approximate bipartitioning. It is implemented with American National Standards Institute (ANSI) C and compared to MeTiS. The experimental evaluation shows that it performs well and produces encouraging solutions on 18 different graphs benchmarks. 展开更多
关键词 rain-cut graph bipartitioning multi-level algorithm ant colony optimization (ACO)
下载PDF
Traffic Scene Captioning with Multi-Stage Feature Enhancement
10
作者 Dehai Zhang Yu Ma +3 位作者 Qing Liu Haoxing Wang Anquan Ren Jiashu Liang 《Computers, Materials & Continua》 SCIE EI 2023年第9期2901-2920,共20页
Traffic scene captioning technology automatically generates one or more sentences to describe the content of traffic scenes by analyzing the content of the input traffic scene images,ensuring road safety while providi... Traffic scene captioning technology automatically generates one or more sentences to describe the content of traffic scenes by analyzing the content of the input traffic scene images,ensuring road safety while providing an important decision-making function for sustainable transportation.In order to provide a comprehensive and reasonable description of complex traffic scenes,a traffic scene semantic captioningmodel withmulti-stage feature enhancement is proposed in this paper.In general,the model follows an encoder-decoder structure.First,multilevel granularity visual features are used for feature enhancement during the encoding process,which enables the model to learn more detailed content in the traffic scene image.Second,the scene knowledge graph is applied to the decoding process,and the semantic features provided by the scene knowledge graph are used to enhance the features learned by the decoder again,so that themodel can learn the attributes of objects in the traffic scene and the relationships between objects to generate more reasonable captions.This paper reports extensive experiments on the challenging MS-COCO dataset,evaluated by five standard automatic evaluation metrics,and the results show that the proposed model has improved significantly in all metrics compared with the state-of-the-art methods,especially achieving a score of 129.0 on the CIDEr-D evaluation metric,which also indicates that the proposed model can effectively provide a more reasonable and comprehensive description of the traffic scene. 展开更多
关键词 Traffic scene captioning sustainable transportation feature enhancement encoder-decoder structure multi-level granularity scene knowledge graph
下载PDF
A knowledge graph for standard carbonate microfacies and its application in the automatical reconstruction of the relative sea-level curve
11
作者 Han Wang Hanting Zhong +6 位作者 Anqing Chen Keran Li Hang He Zhe Qi Dongyu Zheng Hongyi Zhao Mingcai Hou 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第5期402-414,共13页
The reconstruction of high-resolution sea-level variation curves in deep time based on the standard car-bonate microfacies knowledge graph(SMFKG)is of great scientific significance for exploring the Earth system evolu... The reconstruction of high-resolution sea-level variation curves in deep time based on the standard car-bonate microfacies knowledge graph(SMFKG)is of great scientific significance for exploring the Earth system evolution and predicting future sea-level and climate changes.In this study,the concepts,attri-butes,and relationships among standard carbonate microfacies(SMF)are comprehensively analyzed;an ontology layer is established and its data layer is constructed using thin-section descriptions;and finally,the SMFKG is established.Additionally,based on the knowledge graph,an application for automatically identifying SMF using identification markers and reconstructing the high-resolution relative sea-level variation curve using the SMF and facies zones is compiled.Then,all thin sections of the late Ediacaran Dengying Formation in the western margin of the Yangtze Platform are observed and described in detail,the SMF and facies zones are identified automatically,and the relative sea-level curve is recon-structed automatically using the SMFKG.The reconstruction results show that the Yangtze Platform experienced four sea-level rise and fall cycles in the late Ediacaran,of which two intense regressions led to subaerial-exposed unconformities in the interior and top of the Dengying Formation,which is highly consistent with previous research results.This shows that the high-resolution relative sea-level variation curve in deep time can be reconstructed efficiently and intelligently using the SMFKG.Additionally,in the near future,the combination of an automatic digital slide-scanning system,machine-learning techniques,and the SMFKG can achieve one-stop fully automatic SMF recognition and reconstruction of high-resolution relative sea-level variation curves in deep time,which has a high application value. 展开更多
关键词 Sea-level curve Standard microfacies Knowledge graph Ediacaran Dengying Formation
原文传递
Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model
12
作者 Fulu Wei Xin Li +3 位作者 Yongqing Guo Zhenyu Wang Qingyin Li Xueshi Ma 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2001-2018,共18页
Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow d... Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation. 展开更多
关键词 Flow direction level traffic flow forecasting spatiotemporal characteristics graph convolutional network short-and long-termmemory network
下载PDF
基于实体层次结构的文档级别关系抽取
13
作者 李强 李实 《计算机工程与设计》 北大核心 2023年第4期1081-1087,共7页
针对目前文档级别关系抽取主要关注实体间的逻辑推理,未充分利用实体间的层次语义信息问题,提出一种基于实体层次结构的文档级别关系抽取模型。考虑多句文本中实体间的交互,将实体构建为文档图并使用图卷积神经进行信息传播;通过实体间... 针对目前文档级别关系抽取主要关注实体间的逻辑推理,未充分利用实体间的层次语义信息问题,提出一种基于实体层次结构的文档级别关系抽取模型。考虑多句文本中实体间的交互,将实体构建为文档图并使用图卷积神经进行信息传播;通过实体间的上下位关联构建实体层次树,使用注意力机制将层次语义信息融入实体;为降低模型对实体表面信息的关注,使用实体类型对实体词进行替换。实验结果表明,在大规模文档级别关系抽取数据集上实体语义信息增强的方案能够有效提高文档级别关系抽取的效果。 展开更多
关键词 文档级别 关系抽取 实体层次结构 逻辑推理 注意力机制 文档图 信息融合
下载PDF
一类半鞅样本轨道的Fractal性质 被引量:2
14
作者 骆顺龙 张正敏 《应用数学》 CSCD 北大核心 1996年第1期42-45,共4页
本文用Hausdorff维数刻画了一类半这样本轨道的Fractal性质,并由此研究了Brown运动与有界变差过程的碰撞问题.
关键词 半鞅 水平集 样本轨道 维纳过程 分形性质
下载PDF
A Heuristic Reputation Based System to Detect Spam Activities in a Social Networking Platform, HRSSSNP
15
作者 Manoj Rameshchandra Thakur Sugata Sanyal 《Social Networking》 2013年第1期42-45,共4页
The introduction of the social networking platform has drastically affected the way individuals interact. Even though most of the effects have been positive, there exist some serious threats associated with the intera... The introduction of the social networking platform has drastically affected the way individuals interact. Even though most of the effects have been positive, there exist some serious threats associated with the interactions on a social networking website. A considerable proportion of the crimes that occur are initiated through a social networking platform [1]. Almost 33% of the crimes on the internet are initiated through a social networking website [1]. Moreover activities like spam messages create unnecessary traffic and might affect the user base of a social networking platform. As a result preventing interactions with malicious intent and spam activities becomes crucial. This work attempts to detect the same in a social networking platform by considering a social network as a weighted graph wherein each node, which represents an individual in the social network, stores activities of other nodes with respect to itself in an optimized format which is referred to as localized data set. The weights associated with the edges in the graph represent the trust relationship between profiles. The weights of the edges along with the localized data set are used to infer whether nodes in the social network are compromised and are performing spam or malicious activities. 展开更多
关键词 SPAM Social graph Collaborative Filtering Weighted graph LOCALIZED Data-Set Trust level
下载PDF
ON THE SPECTRAL PROPERTIES OF M-MATRICES AND ITS APPLICATIONS
16
作者 黎稳 孙伟伟 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1999年第4期418-424,共7页
Let A be an M-matrix and B be a Z-matrix. In this paper we reveal the spectral relationship of A and B under some interesting conditions. Applying this result, we solve an open problem on splittings of an M-matrix and... Let A be an M-matrix and B be a Z-matrix. In this paper we reveal the spectral relationship of A and B under some interesting conditions. Applying this result, we solve an open problem on splittings of an M-matrix and partially answer an open problem on the level diagrams for A and B. 展开更多
关键词 M-MATRIX Z-MATRIX reduced graph singular graph level diagram splitting
全文增补中
返乡创业政策绩效评估的实证分析与对策——以陕西省返乡创业政策满意度的调研为例 被引量:1
17
作者 牟小刚 《陕西理工大学学报(社会科学版)》 2022年第4期75-81,共7页
创业政策满意度是衡量政策是否真正落地见效的重要指标。从政策满意度视角出发,构建出创业政策绩效评估指标体系。基于陕西省返乡创业者的调研数据,运用满意度测评法和主成分分析法测量创业者对创业政策的满意度和关注度,并结合四分象... 创业政策满意度是衡量政策是否真正落地见效的重要指标。从政策满意度视角出发,构建出创业政策绩效评估指标体系。基于陕西省返乡创业者的调研数据,运用满意度测评法和主成分分析法测量创业者对创业政策的满意度和关注度,并结合四分象限图实证研究影响创业政策绩效的关键因素。研究结论从创业扶持政策的系统性角度,提出加大财税金融支持,强化创业用地保障,加强对创业政策的宣传推广,健全对创业工作的考核奖励机制,提升政府工作效率,完善创业服务保障运行机制,为返乡创业者营造良好的发展环境。 展开更多
关键词 返乡创业 创业政策 绩效评估 陕西省
下载PDF
3D Multiphase Piecewise Constant Level Set Method Based on Graph Cut Minimization 被引量:2
18
作者 Tiril P Gurholt Xuecheng Tai 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第4期403-420,共18页
Segmentation of three-dimensional(3D) complicated structures is of great importance for many real applications.In this work we combine graph cut minimization method with a variant of the level set idea for 3D segmenta... Segmentation of three-dimensional(3D) complicated structures is of great importance for many real applications.In this work we combine graph cut minimization method with a variant of the level set idea for 3D segmentation based on the Mumford-Shah model.Compared with the traditional approach for solving the Euler-Lagrange equation we do not need to solve any partial differential equations.Instead,the minimum cut on a special designed graph need to be computed.The method is tested on data with complicated structures.It is rather stable with respect to initial value and the algorithm is nearly parameter free.Experiments show that it can solve large problems much faster than traditional approaches. 展开更多
关键词 Piecewise constant level set method energy minimization graph cut SEGMENTATION three-dimensional.
下载PDF
面向大型载人航天器的系统健康状态评估方法研究 被引量:2
19
作者 陈润锋 杨宏 《载人航天》 CSCD 北大核心 2018年第5期561-567,共7页
针对载人航天器系统在安全运行方面的需求,提出了一种面向大型载人航天器的系统健康状态评估方法。首先根据复杂系统的拓扑结构建立图模型,将对系统的健康状态评估转化为对图模型各成分的度量;然后挖掘出图模型中各成分关联数据的模式特... 针对载人航天器系统在安全运行方面的需求,提出了一种面向大型载人航天器的系统健康状态评估方法。首先根据复杂系统的拓扑结构建立图模型,将对系统的健康状态评估转化为对图模型各成分的度量;然后挖掘出图模型中各成分关联数据的模式特征,以系统稳态时的模式特征作为健康基准,将后续观测时刻模式特征与基准模式之间的偏差作为健康状态的度量值,着重考虑了系统组成部分之间的相互作用;最后综合图模型中所有成分的度量结果,构建出表征整个系统健康状态的评估值。以某型号航天器的能源系统在轨遥测数据进行了验证分析,结果表明所提出的方法可以有效地完成对复杂系统的健康状态评估工作,可以为大型载人航天器的健康状态评估提供参考。 展开更多
关键词 大型载人航天器 健康状态评估 系统层 图论
下载PDF
一种基于多层语义特征的图像理解方法 被引量:2
20
作者 莫宏伟 田朋 《控制与决策》 EI CSCD 北大核心 2021年第12期2881-2890,共10页
视觉场景理解包括检测和识别物体、推理被检测物体之间的视觉关系以及使用语句描述图像区域.为了实现对场景图像更全面、更准确的理解,将物体检测、视觉关系检测和图像描述视为场景理解中3种不同语义层次的视觉任务,提出一种基于多层语... 视觉场景理解包括检测和识别物体、推理被检测物体之间的视觉关系以及使用语句描述图像区域.为了实现对场景图像更全面、更准确的理解,将物体检测、视觉关系检测和图像描述视为场景理解中3种不同语义层次的视觉任务,提出一种基于多层语义特征的图像理解模型,并将这3种不同语义层进行相互连接以共同解决场景理解任务.该模型通过一个信息传递图将物体、关系短语和图像描述的语义特征同时进行迭代和更新,更新后的语义特征被用于分类物体和视觉关系、生成场景图和描述,并引入融合注意力机制以提升描述的准确性.在视觉基因组和COCO数据集上的实验结果表明,所提出的方法在场景图生成和图像描述任务上拥有比现有方法更好的性能. 展开更多
关键词 图像理解 语义层 语义特征 视觉关系 场景图 图像描述 注意力机制
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部