In the context of global climate change,the impact of group-occurring ocean dynamic disasters on China's offshore areas is becoming more and more intense.The study of the effect of existing ocean dynamic disasters...In the context of global climate change,the impact of group-occurring ocean dynamic disasters on China's offshore areas is becoming more and more intense.The study of the effect of existing ocean dynamic disasters on offshore hazard-bearing bodies mostly focuses on the effect of single disaster-causing factors,and it is still insufficient to study storm surge and dynamic wave coupling&reinforcement effects as well as the process of the dynamic response of such hazard-bearing bodies as seawalls.This study firstly realized the synchronous process of water level and wave through continuous tide generation and wave generation by the wave maker and tide generating device,so as to realize the dynamic coupling simulation of storm surge and wave in the laboratory.Then the physical model test of the typical seawall section was carried out under the dynamic coupling of storm surge and wave as well as at a conventional fixed water level respectively.In the process of test wave overtopping discharge and the damage process of the levee crown and backwall of seawalls were observed and compared,and their damage mechanism was also studied.展开更多
This paper presents an experimental study of the overtopping breach of homogeneous non-cohesive levee or dike in a 180°bend rectangular flume. Detailed experimental and numerical results provide information on th...This paper presents an experimental study of the overtopping breach of homogeneous non-cohesive levee or dike in a 180°bend rectangular flume. Detailed experimental and numerical results provide information on the breach flow discharge and longitudi- nal and transversal breach profiles for this type of levee. It is indicated that the water level and the flow discharge in the river and the levee material properties are significant influencing factors for the breach evolution. The plane form of the breach is approximately an asymmetrical hyperbola. A formula with a non-constant flow factor is proposed to compute this kind of breach discharge.展开更多
基金Supported by the National Key R&D Program of China(No.2016YFC1402002)the Fifteenth Session Program between China and Bulgaria Scientific and Technological Cooperation Committee(No.15-13)the Major Project of Nanjing Hydraulic Research Institute Funds(Nos.Y218005,Y218006)
文摘In the context of global climate change,the impact of group-occurring ocean dynamic disasters on China's offshore areas is becoming more and more intense.The study of the effect of existing ocean dynamic disasters on offshore hazard-bearing bodies mostly focuses on the effect of single disaster-causing factors,and it is still insufficient to study storm surge and dynamic wave coupling&reinforcement effects as well as the process of the dynamic response of such hazard-bearing bodies as seawalls.This study firstly realized the synchronous process of water level and wave through continuous tide generation and wave generation by the wave maker and tide generating device,so as to realize the dynamic coupling simulation of storm surge and wave in the laboratory.Then the physical model test of the typical seawall section was carried out under the dynamic coupling of storm surge and wave as well as at a conventional fixed water level respectively.In the process of test wave overtopping discharge and the damage process of the levee crown and backwall of seawalls were observed and compared,and their damage mechanism was also studied.
基金Project supported by the National Basic Research and Development Program of China (973 Program, Grant No.2011CB403304)the National Natural Science Foundation of China (Grant No. 11272240)
文摘This paper presents an experimental study of the overtopping breach of homogeneous non-cohesive levee or dike in a 180°bend rectangular flume. Detailed experimental and numerical results provide information on the breach flow discharge and longitudi- nal and transversal breach profiles for this type of levee. It is indicated that the water level and the flow discharge in the river and the levee material properties are significant influencing factors for the breach evolution. The plane form of the breach is approximately an asymmetrical hyperbola. A formula with a non-constant flow factor is proposed to compute this kind of breach discharge.