期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的蛋白质亚细胞定位预测 被引量:3
1
作者 王艺皓 丁洪伟 +2 位作者 李波 保利勇 张颖婕 《计算机应用》 CSCD 北大核心 2020年第11期3393-3399,共7页
针对传统机器学习算法中仍需手工操作表示特征的问题,提出了一种基于堆栈式降噪自编码器(SDAE)深度网络的蛋白质亚细胞定位算法。首先,分别利用改进型伪氨基酸组成法(PseAAC)、伪位置特异性得分矩阵法(PsePSSM)和三联体编码法(CT)对蛋... 针对传统机器学习算法中仍需手工操作表示特征的问题,提出了一种基于堆栈式降噪自编码器(SDAE)深度网络的蛋白质亚细胞定位算法。首先,分别利用改进型伪氨基酸组成法(PseAAC)、伪位置特异性得分矩阵法(PsePSSM)和三联体编码法(CT)对蛋白质序列进行特征提取,并将这三种方法得到的特征向量进行融合,以得到一个全新的蛋白质序列特征表达模型;接着,将融合后的特征向量输入到SDAE深度网络里自动学习更有效的特征表示;然后选用Softmax回归分类器进行亚细胞的分类预测,并采用留一法在Viral proteins和Plant proteins两个数据集上进行交叉验证;最后,将所提算法的结果与mGOASVM、HybridGO-Loc等多种现有算法的结果进行比较。实验结果表明,所提算法在Viral proteins数据集上取得了98.24%的准确率,与mGOASVM算法相比提高了9.35个百分点;同时所提算法在Plant proteins数据集上取得了97.63%的准确率,比mGOASVM算法和HybridGO-Loc算法分别提高了10.21个百分点和4.07个百分点。综上说明所提算法可以有效提高蛋白质亚细胞定位预测的准确性。 展开更多
关键词 深度学习 特征融合 蛋白质定位 堆栈式降噪自编码器 留一法
下载PDF
Evolutionary artificial neural network approach for predicting properties of Cu-15Ni-8Sn-0.4Si alloy 被引量:1
2
作者 方善锋 汪明朴 +2 位作者 王艳辉 齐卫宏 李周 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第5期1223-1228,共6页
A novel data mining approach,based on artificial neural network(ANN) using differential evolution(DE) training algorithm,was proposed to model the non-linear relationship between parameters of aging processes and mech... A novel data mining approach,based on artificial neural network(ANN) using differential evolution(DE) training algorithm,was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy.In order to improve predictive accuracy of ANN model,the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer.The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm.The present calculated results are consistent with the experimental values,which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient.Moreover,the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu-15Ni-8Sn-0.4Si alloy. 展开更多
关键词 Cu-15Ni-8Sn-0.4Si 合金 老化过程 电性质 人工神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部