期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于神经切线核的学件RKME规约
1
作者 谭志豪 史浩宇 +1 位作者 陈梓轩 姜远 《计算机学报》 EI CAS CSCD 北大核心 2024年第6期1232-1243,共12页
当前机器学习技术已经在大量领域得到广泛应用,然而仍面临许多亟待解决的问题:依赖大量的训练数据和训练技巧、难以适应环境变化、数据隐私/所有权的保护、灾难性遗忘等等.最近,学件范式使得上述问题同时得到系统性地解决成为可能.在该... 当前机器学习技术已经在大量领域得到广泛应用,然而仍面临许多亟待解决的问题:依赖大量的训练数据和训练技巧、难以适应环境变化、数据隐私/所有权的保护、灾难性遗忘等等.最近,学件范式使得上述问题同时得到系统性地解决成为可能.在该范式下,用户面临新的机器学习任务时可以通过学件基座系统方便地复用他人的结果,而不必从头开始.学件范式的核心在于规约,规约使得学件基座系统在不接触原始数据的情况下,可以根据用户的需求快速识别出对用户任务有帮助的学件.近期研究均通过缩略核均值嵌入(Reduced Kernel Mean Embedding,RKME)为模型构造规约,并通过构建学件原型系统验证了范式的有效性.在实际中,学件基座系统中往往包含在各种领域任务、数据类型上构建的机器学习模型,而传统的RKME规约面临维度灾难的问题,难以适用于高维数据,例如图像场景.为了拓展RKME规约的适用范围,本文引入神经切线核进行RKME规约构造.为提升方法的高效性,本文进一步通过神经网络高斯过程与随机特征近似,快速为各种模型生成RKME规约.最后,本文在真实数据构建的销量预测、图像分类场景的学件基座系统中进行大量实验验证了所提出方法的有效性和高效性,所提出方法相比于传统RKME规约查搜准确率显著提升近9%,且实验结果表明改进后的规约在图像任务上具有良好的隐私保护性质.代码见:. 展开更多
关键词 学件 学件基座系统 规约 神经切线核 缩略核均值嵌入
下载PDF
领域知识指导的模型重用 被引量:5
2
作者 吴西竹 周志华 《中国科学:信息科学》 CSCD 北大核心 2017年第11期1483-1492,共10页
机器学习模型的生命周期通常比较短暂,大量的机器学习模型针对特定任务设计,在完成任务之后即失去使用价值.然而,一个精心设计和训练的模型通常更精炼地概括了训练数据中蕴含的知识.更进一步地,当无法获取原始训练数据时,已有的预训练... 机器学习模型的生命周期通常比较短暂,大量的机器学习模型针对特定任务设计,在完成任务之后即失去使用价值.然而,一个精心设计和训练的模型通常更精炼地概括了训练数据中蕴含的知识.更进一步地,当无法获取原始训练数据时,已有的预训练模型就是仅剩的信息来源.本文提出了一种重用已有的预训练机器学习模型来辅助当前任务学习的框架,尤其适用于当前任务数据量不足的情形.该方法把已有模型视为黑盒,不需要已有模型的结构信息,并使用领域知识对已有模型进行筛选和结合.实验表明,在该框架下,通过对已有模型的重用,多个实际任务上的性能可以得到显著提升. 展开更多
关键词 机器学习 模型重用 领域知识 环境变化 学件
原文传递
联邦学习下对抗训练样本表示的研究 被引量:5
3
作者 冯霁 蔡其志 姜远 《中国科学:信息科学》 CSCD 北大核心 2021年第6期900-911,共12页
联邦机器学习系统由于能够在多方之间训练联合模型而无需各方共享训练数据,因此在学术界和工业界都获得了越来越多的关注和应用.与传统的机器学习框架相比,这类系统被认为具有保护数据隐私的良好潜力.另一方面,训练阶段攻击是一种通过... 联邦机器学习系统由于能够在多方之间训练联合模型而无需各方共享训练数据,因此在学术界和工业界都获得了越来越多的关注和应用.与传统的机器学习框架相比,这类系统被认为具有保护数据隐私的良好潜力.另一方面,训练阶段攻击是一种通过故意扰动训练数据,从而希望在测试时操纵相应的学习系统预测行为的攻击方法.例如,DeepConfuse是最近的一种高效生成对抗训练数据的方法,展示了传统监督学习范式在此类攻击下的脆弱性.在本文中,作者扩展了DeepConfuse方法,将其应用在联邦机器学习框架中.这是首次针对联邦学习系统的训练阶段攻击.实验结果表明,在δ–准确率损失的衡量标准下,相比于传统的机器学习框架,联邦学习系统在DeepConfuse攻击下更加脆弱. 展开更多
关键词 联邦学习 学件 表示学习
原文传递
使用多分类器的分布式模型重用技术
4
作者 李新春 詹德川 《计算机科学与探索》 CSCD 北大核心 2022年第10期2310-2319,共10页
传统的机器学习经常采用数据中心化的方式进行训练,然而由于实际应用中的传输开销或者隐私保护限制,数据越来越呈现分散化、隔离化的趋势。分布式训练学习技术为分散在信息孤岛上的数据融合提供了一种解决方案。然而,由于分散化数据本... 传统的机器学习经常采用数据中心化的方式进行训练,然而由于实际应用中的传输开销或者隐私保护限制,数据越来越呈现分散化、隔离化的趋势。分布式训练学习技术为分散在信息孤岛上的数据融合提供了一种解决方案。然而,由于分散化数据本身具有天然异质性,本地数据分布经常是非独立同分布的(Non-IID),这给分布式训练带来了挑战。首先,为了应对单一模型难以适配所有异质客户端的难题,在分布式训练的基础上引入了模型重用技术,提出了分布式模型重用框架(DMR)。然后,通过理论分析指出集成学习可以为异构数据提供有效的解决方案,并在此基础之上提出了使用多分类器的分布式模型重用技术(McDMR)。最后,为了减少实际应用过程中的存储、计算和传输开销,继而提出了两种具体的优化方案:使用多头分类器的分布式模型重用(McDMR-MH)和使用随机分类器采样的分布式模型重用(McDMR-SC)。在多个公开数据集上进行实验,实验结果验证了所提方法的有效性。 展开更多
关键词 学件 模型重用 多分类器 分布式学习 集成 效率 隐私保护
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部