期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A defect recognition model for cross-section profile of hot-rolled strip based on deep learning
1
作者 Tian-lun Li Wen-quan Sun +5 位作者 An-rui He Jian Shao Chao Liu Ai-bin Zhang Yi Qiang Xiang-hong Ma 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第12期2436-2447,共12页
The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and ... The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and imperfect sample data make it a challenge of recognizing cross-section defects,and current industrial judgment methods rely excessively on human decision making.A novel stacked denoising autoencoders(SDAE)model optimized with support vector machine(SVM)theory was proposed for the recognition of cross-section defects.Firstly,interpolation filtering and principal component analysis were employed to linearly reduce the data dimensionality of the profile curve.Secondly,the deep learning algorithm SDAE was used layer by layer for greedy unsupervised feature learning,and its final layer of back-propagation neural network was replaced by SVM for supervised learning of the final features,and the final model SDAE_SVM was obtained by further optimizing the entire network parameters via error back-propagation.Finally,the curve mirroring and combination stitching methods were used as data augmentation for the training set,which dealt with the problem of sample imbalance in the original data set,and the accuracy of cross-section defect prediction was further improved.The approach was applied in a 1780-mm hot rolling line of a steel mill to achieve the automatic diagnosis and classification of defects in cross-section profile of hot-rolled strip,which helps to reduce flatness quality concerns in downstream processes. 展开更多
关键词 Hot-rolled strip cross section:Curve recognition Deep learning-stacked denoising autoencoder Support vector machine Imperfect data
原文传递
基于堆栈降噪自编码器改进的混合推荐算法 被引量:14
2
作者 杨帅 王鹃 《计算机应用》 CSCD 北大核心 2018年第7期1866-1871,共6页
针对传统协同过滤算法仅利用评分信息作为推荐依据,没有利用用户评论和标签信息,无法准确反映用户对项目特征的偏好,推荐精确度低且容易过拟合等问题,提出一种基于堆栈降噪自编码(SDAE)改进的混合推荐(SDHR)算法。首先利用深度学习模型S... 针对传统协同过滤算法仅利用评分信息作为推荐依据,没有利用用户评论和标签信息,无法准确反映用户对项目特征的偏好,推荐精确度低且容易过拟合等问题,提出一种基于堆栈降噪自编码(SDAE)改进的混合推荐(SDHR)算法。首先利用深度学习模型SDAE从用户自由文本标签中抽取项目的显式特征信息;然后,改进隐因子模型(LFM)算法,使用显式项目特征信息替换LFM中的抽象特征,进行矩阵分解训练;最后通过用户-项目偏好矩阵为用户提供推荐。在公开数据集Movie Lens上的实验测试,与三组推荐模型(基于标签权重及协同过滤、基于SDAE和极限学习机、基于循环神经网络)比较,该算法推荐精确度分别提高了45.2%、38.4%和16.1%。实验结果表明,所提算法可以充分利用项目自由文本标签信息提高推荐性能。 展开更多
关键词 推荐系统 协同过滤 深度学习 堆栈降噪自编码器 隐因子模型
下载PDF
基于栈式自编码器模型的汇率时间序列预测 被引量:10
3
作者 寇茜茜 何希平 《计算机应用与软件》 2017年第3期218-221,247,共5页
针对目前具有非线性特征的金融时间序列浅层模型预测精度有限的问题,提出一种由底层的栈式自编码器和顶层的回归神经元组成的栈式自编码神经网络预测模型。首先利用自编码器的无监督学习机制对时间序列进行特征识别与学习,逐层贪婪学习... 针对目前具有非线性特征的金融时间序列浅层模型预测精度有限的问题,提出一种由底层的栈式自编码器和顶层的回归神经元组成的栈式自编码神经网络预测模型。首先利用自编码器的无监督学习机制对时间序列进行特征识别与学习,逐层贪婪学习神经网络各层,之后将栈式自编码器扩展为有监督机制的SAEP模型,将SAE学习到的参数用于初始化神经网络,最后利用有监督学习对权值进行微调。实验设计利用汇率时间序列作为训练及测试样本,与目前较成熟的方法进行对比实验,验证了所提出的模型在汇率时序预测应用中的有效性。 展开更多
关键词 时间序列 预测 深度学习 栈式自编码器 特征学习 深度神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部