期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于双分辨率S变换和学习向量量化神经网络的电能质量扰动检测方法 被引量:31
1
作者 李建闽 林海军 +2 位作者 梁成斌 滕召胜 成达 《电工技术学报》 EI CSCD 北大核心 2019年第16期3453-3463,共11页
随着实际电网中非线性负荷以及冲击性负荷的不断增加,电能质量问题日趋严重。实现电能质量扰动信号的准确、快速检测对于查找电能质量问题根源、改善电能质量、确保电网安全、保障经济稳定具有重大意义。为此,提出一种基于双分辨率S变... 随着实际电网中非线性负荷以及冲击性负荷的不断增加,电能质量问题日趋严重。实现电能质量扰动信号的准确、快速检测对于查找电能质量问题根源、改善电能质量、确保电网安全、保障经济稳定具有重大意义。为此,提出一种基于双分辨率S变换和学习向量量化(LVQ)神经网络的电能质量扰动信号检测方法。算法先采用双分辨率S变换实现扰动信号特征向量的准确、快速提取。在获得扰动信号的特征向量后对各特征向量进行归一化处理并利用经过训练的LVQ神经网络对扰动信号进行分类识别。仿真和实际测试结果表明,该文提出的基于双分辨率S变换和LVQ神经网络的电能质量扰动检测算法具有训练速度快、分类准确率高、适合嵌入式实现等优点。 展开更多
关键词 电能质量 扰动分类 S变换 学习向量量化神经网络 时频分析
下载PDF
一种基于LVQ神经网络与图像处理的火焰识别算法 被引量:14
2
作者 包晗 康泉胜 周明 《中国安全科学学报》 CAS CSCD 北大核心 2011年第6期60-64,共5页
针对传统火灾探测技术存在的不稳定、误判率高等缺点,通过分析室内火灾图像与常见干扰光源图像的特点,提出一种基于人工神经网络的火焰图像检测技术。对火焰图像的基本特性进行分析,利用火焰图像序列的面积重叠率和中心相对移动率以及... 针对传统火灾探测技术存在的不稳定、误判率高等缺点,通过分析室内火灾图像与常见干扰光源图像的特点,提出一种基于人工神经网络的火焰图像检测技术。对火焰图像的基本特性进行分析,利用火焰图像序列的面积重叠率和中心相对移动率以及颜色等信息,结合实现学习向量量化(LVQ)神经网络融合技术,对视频序列图像中火焰的自动检测。仿真试验结果表明,基于LVQ神经网络的信息融合算法的网络收敛速度较快,有较高的火灾火焰识别准确率。 展开更多
关键词 学习向量量化(lvq)神经网络 图像处理 火焰识别 目标检测 火灾火焰
下载PDF
基于人工神经网络的太阳能电池片表面质量检测系统 被引量:11
3
作者 伍李春 刘明周 +2 位作者 蒋倩男 葛茂根 凌琳 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2017年第9期1176-1180,1192,共6页
针对依赖人工进行太阳能电池片表面质量检测时效率和精度低的问题,文章提出了基于机器视觉以及人工神经网络的太阳能电池片表面质量检测方法。将表面缺陷分为外形缺陷、颜色缺陷、裂纹以及丝印线路缺陷4类,基于模板匹配检测外形缺陷,基... 针对依赖人工进行太阳能电池片表面质量检测时效率和精度低的问题,文章提出了基于机器视觉以及人工神经网络的太阳能电池片表面质量检测方法。将表面缺陷分为外形缺陷、颜色缺陷、裂纹以及丝印线路缺陷4类,基于模板匹配检测外形缺陷,基于HIS空间下的颜色直方图检测颜色缺陷;针对细微性缺陷容易受噪声影响的特点,利用2类人工神经网络进行断栅检测,并对这2类神经网络进行比较。大量实验结果验证了上述方法能够准确、快速地检测出太阳能电池片表面缺陷。 展开更多
关键词 缺陷检测 机器视觉 人工神经网络 正则化径向基函数(RBF)网络 学习向量化(lvq)网络
下载PDF
基于EMD和LVQ的信号特征提取及分类方法 被引量:8
4
作者 余炜 周娅 +3 位作者 马晶晶 万代立 刘伦 张灿斌 《数据采集与处理》 CSCD 北大核心 2014年第5期683-687,共5页
针对非平稳、非线性、微弱信号难以分析和处理的特点,本文提出了一种基于经验模式分解和学习向量量化神经网络的信号处理和分类方法,并在生物信号处理领域(左、右手运动想象的脑电信号)进行了研究和应用。首先通过经验模式分解算法对脑... 针对非平稳、非线性、微弱信号难以分析和处理的特点,本文提出了一种基于经验模式分解和学习向量量化神经网络的信号处理和分类方法,并在生物信号处理领域(左、右手运动想象的脑电信号)进行了研究和应用。首先通过经验模式分解算法对脑电信号分解,然后选取主要固有模态函数分量并计算其绝对均值作为特征值,最后使用学习向量量化网络进行分类,并分别与支持向量机和误差反向传播神经网络分类算法进行了对比研究。实验结果表明,所提出的算法分类正确率达到了87%,相比于其余两种对比算法在特定的信号处理领域优越,具有一定的参考和研究价值。 展开更多
关键词 经验模式分解 学习向量量化神经网络 脑-机接口 脑电信号
下载PDF
基于高分遥感影像的建筑物侧面信息提取及其高度计算 被引量:5
5
作者 宋旭东 曹文峰 +1 位作者 冯德俊 张星星 《北京测绘》 2020年第3期296-300,共5页
本文选取成都市某一区域建筑物A、B为研究对象,采用分辨率为0.61 m的Quick bird影像,运用图像分割法和LVQ神经网络算法,提取建筑物侧面信息,根据假设法原理,构建高度计算物理模型,求取建筑物高度。对比实测数据,结合可能影响实验结果的... 本文选取成都市某一区域建筑物A、B为研究对象,采用分辨率为0.61 m的Quick bird影像,运用图像分割法和LVQ神经网络算法,提取建筑物侧面信息,根据假设法原理,构建高度计算物理模型,求取建筑物高度。对比实测数据,结合可能影响实验结果的实地因素、遥感影像因素进行精度分析与评价,探讨基于高分遥感影像的建筑物侧面信息提取和高度计算的方法。结果表明,LVQ神经网络算法在建筑物侧面提取和高度计算中有更好的应用价值,精度高达94%。 展开更多
关键词 高分遥感影像 侧面信息提取 图像分割法 lvq神经网络 高度物理模型
下载PDF
基于工况识别的PHEB能量管理策略研究 被引量:3
6
作者 尹安东 张黎明 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第2期145-150,共6页
为提高插电式混合动力客车(plug-in hybrid electric bus,PHEB)的燃油经济性,文章提出了一种基于工况识别的PHEB能量管理策略。首先运用主成分分析(principal component analysis,PCA)和模糊C均值聚类法构建代表性城市工况;然后基于学... 为提高插电式混合动力客车(plug-in hybrid electric bus,PHEB)的燃油经济性,文章提出了一种基于工况识别的PHEB能量管理策略。首先运用主成分分析(principal component analysis,PCA)和模糊C均值聚类法构建代表性城市工况;然后基于学习向量量化(learning vector quantization,LVQ)神经网络进行工况识别,并根据改进动态规划(dynamic programming,DP)算法提炼出全局最优能量分配规则,对能量管理策略进行优化;最后基于AMESim和Simulink建立PHEB整车和能量管理策略仿真模型,并在构建的合肥市代表性城市工况下进行仿真分析。仿真结果表明,该文提出的能量管理策略比电量消耗-电量维持(CD-CS)能量管理策略的燃油经济性提高了5.2%。 展开更多
关键词 插电式混合动力客车(PHEB) 能量管理策略 行驶工况 学习向量量化(lvq)神经网络 动态规划(DP)算法
下载PDF
基于LVQ神经网络的城市快速路事件自动检测算法 被引量:2
7
作者 魏丽英 夏明 田春林 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第2期412-416,共5页
基于具有自组织功能的学习矢量量化(LVQ)神经网络设计了城市快速路异常事件的自动检测算法,提出分车道检测的构想。研究了原始数据筛选、输入向量模式、神经元个数及检测时段等参数的选择。基于小波分析技术对原始数据的高频噪声进行滤... 基于具有自组织功能的学习矢量量化(LVQ)神经网络设计了城市快速路异常事件的自动检测算法,提出分车道检测的构想。研究了原始数据筛选、输入向量模式、神经元个数及检测时段等参数的选择。基于小波分析技术对原始数据的高频噪声进行滤波,引入长车流量作为输入参数,并对比了引入前后的检测效果。选用加利福尼亚算法作为评价的参考依据,对其执行过程和门限值的选择进行了研究。 展开更多
关键词 交通运输工程 城市快速路 事件检测 加利福尼亚算法 lvq神经网络
下载PDF
基于神经网络的尿样颜色识别方法比对分析 被引量:1
8
作者 王春红 张弘强 +2 位作者 王雪飞 张全禹 崔金玉 《绥化学院学报》 2013年第8期165-168,共4页
针对颜色色空间转换非线性的复杂关系,在获取标准阈值颜色色度值,进行归一化处理后,利用学习矢量量化(LVQ)神经网络和概率神经网络(PNN)进行尿样颜色识别。比对结果表明:(1)利用神经网络进行分类识别时实验数据的归一化处理是完全必要的... 针对颜色色空间转换非线性的复杂关系,在获取标准阈值颜色色度值,进行归一化处理后,利用学习矢量量化(LVQ)神经网络和概率神经网络(PNN)进行尿样颜色识别。比对结果表明:(1)利用神经网络进行分类识别时实验数据的归一化处理是完全必要的。(2)与颜色色差评价方法进行了比对,该方法可行而有效。 展开更多
关键词 颜色识别 学习矢量量化(lvq)神经网络 概率神经网络(PNN)
下载PDF
基于支持向量机铅酸蓄电池的分类研究
9
作者 申建斌 唐征 唐有根 《电源技术》 CAS CSCD 北大核心 2006年第9期757-760,共4页
铅酸蓄电池是目前广泛使用的一种二次电池。在胶体电解质铅酸蓄电池的生产中,灌注的胶体电解质量不够的铅酸蓄电池必须在化成结束后重新补充胶体电解质。一般而言,判断铅酸蓄电池是否需要补充电解质是依据其化成后的电池容量和电解液体... 铅酸蓄电池是目前广泛使用的一种二次电池。在胶体电解质铅酸蓄电池的生产中,灌注的胶体电解质量不够的铅酸蓄电池必须在化成结束后重新补充胶体电解质。一般而言,判断铅酸蓄电池是否需要补充电解质是依据其化成后的电池容量和电解液体积。很明显这是一种耗时且不利于胶体电解质铅酸蓄电池配组的方法。文章提出了一种基于支持向量机的铅酸蓄电池补胶分类的方法,通过铅酸蓄电池化成过程中间步骤四个时间点的测试电压判断铅酸蓄电池是否需要补充胶体电解质。研究结果表明,该方法优于基于学习向量量化神经网络的分类方法,可以有效地缩短胶体电解质铅酸蓄电池生产时间。 展开更多
关键词 支持向量机(SVM) 学习向量量化神经网络(lvq) 铅酸蓄电池 胶体电解质 快速分类
下载PDF
小波包奇异谱熵与LVQ网络齿轮箱轴承退化评估
10
作者 肖乾 汪寒俊 +5 位作者 朱海燕 王文静 朱恩豪 叶小芬 魏昱洲 李林 《振动.测试与诊断》 EI CSCD 北大核心 2024年第6期1181-1189,1249,1250,共11页
为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络... 为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络聚类模型中,建立性能退化评估模型;其次,将测试样本按同样的方式提取特征向量,输入到建立好的模型中评估轴承性能退化状态;然后,选取轴承全寿命疲劳试验进行分析,并选择特征优选和模糊C均值聚类算法进行对比;最后,根据LVQ神经网络聚类算法确定训练样本中正常状态和失效状态的聚类中心,建立性能退化评估模型。结果表明:将小波包奇异谱熵和LVQ神经网络聚类算法相结合,能较好区分齿轮箱轴承不同的退化状态,准确表现轴承性能退化曲线;通过隶属度函数计算隶属度作为性能退化评价指标,可以对性能退化状态进行定量表征;通过对时域指标和频域指标特征优选进行对比,验证了本研究方法更加有效,对早期退化更敏感,能及时发现早期退化并且能对退化程度进行准确评估。 展开更多
关键词 交通工程 齿轮箱振动加速度 信号仿真 小波包奇异谱熵 学习向量量化神经网络聚类 性能退化评估
下载PDF
基于GMAPM和SOM-LVQ-ANN的输电线路故障综合识别方法 被引量:5
11
作者 孙晓明 秦亮 刘涤尘 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2019年第12期1079-1090,1105,共13页
现有输电线路故障识别方法大多不能同时识别输电线路的低/高阻抗故障和发展性故障以及电力系统的异常工况(包括低频振荡、铁磁谐振和PT/CT饱和等)和此工况下的故障,故不能满足除继电保护领域外的继电保护测试领域及大电网事故分析和预... 现有输电线路故障识别方法大多不能同时识别输电线路的低/高阻抗故障和发展性故障以及电力系统的异常工况(包括低频振荡、铁磁谐振和PT/CT饱和等)和此工况下的故障,故不能满足除继电保护领域外的继电保护测试领域及大电网事故分析和预警防御领域的新的应用需求.因此,提出一种基于广义改进自适应Prony方法(generalized modified adaptive Prony method,GMAPM)和自组织映射-学习向量量化-人工神经网络(self-organizing mapping-learning vector quantization-artificial neural network,SOM-LVQ-ANN)的输电线路故障综合识别方法,以期能同时识别以上输电线路故障和电力系统异常工况及异常工况下的故障.其中,作为信息提取环节的GMAPM实现了多路信号的并行处理和同时分析,作为特征识别环节的SOM-LVQ-ANN继承了SOM-ANN的强自主学习能力和泛化能力以及LVQ-ANN可预先指定故障类型且便于类型编码和拓展的优点.仿真实验结果初步验证了本方法的优良性能. 展开更多
关键词 输电线路故障综合识别方法 广义改进自适应Prony方法 自组织映射-学习向量量化-人工神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部