期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
改进的LeNet-5模型在苹果图像识别中的应用 被引量:25
1
作者 张力超 马蓉 张垚鑫 《计算机工程与设计》 北大核心 2018年第11期3570-3575,共6页
针对红富士与红元帅价格口感不同而外形相似的现象,提出一种基于LeNet-5改进的神经网络模型对其进行机器自动分类识别。以64×64像素的彩色图像作为模型输入,在全连接层之前加入Flatten层压缩三维彩色图像维度;改变全连接层激活函数... 针对红富士与红元帅价格口感不同而外形相似的现象,提出一种基于LeNet-5改进的神经网络模型对其进行机器自动分类识别。以64×64像素的彩色图像作为模型输入,在全连接层之前加入Flatten层压缩三维彩色图像维度;改变全连接层激活函数为LeakyReLU,加入Dropout策略减少过拟合;通过对比实验找出该模型中最佳的训练优化器、卷积核大小、滤波器数量、学习步长、全连接层神经元个数等影响卷积神经网络性能的重要参数。与其它两种SVM方法进行对比,实验结果表明,在经过多次参数寻优后,该模型在对红富士和红元帅两种苹果的分类识别中的测试时间与测试精度优于SVM方法。 展开更多
关键词 苹果分类 卷积神经网络 目标识别 DROPOUT leakyrelu
下载PDF
融合渐进训练策略的logo图像分类
2
作者 麻宇轩 齐亚莉 《计算机系统应用》 2023年第6期130-139,共10页
经济全球化赋予了logo巨大的商业价值,随着计算机视觉领域的发展,为logo分类与识别提供了更广阔的应用领域.本文针对logo图像的分类识别,为了提高模型对logo图像分类的能力,基于logo图像整体特征不显著且数量众多的特点,提出了用细粒度... 经济全球化赋予了logo巨大的商业价值,随着计算机视觉领域的发展,为logo分类与识别提供了更广阔的应用领域.本文针对logo图像的分类识别,为了提高模型对logo图像分类的能力,基于logo图像整体特征不显著且数量众多的特点,提出了用细粒度图像分类的方法渐进式多粒度拼图训练(progressive multi-granularity training of jigsaw patches, PMG-Net)对logo图像数据集进行分类.通过拼图生成器生成包含不同粒度信息的输入图像,再引入渐进式多粒度训练模块融合不同粒度的特征,融合后的特征更注重图像之间的细微差别,使logo图像分类的效果有显著提高.在提取输入图像特征时采用LeakyReLU (leaky rectified linear unit)激活函数保留图像中的负值特征信息,并引入通道注意力机制,调整特征通道的权重,增强特征信息指导能力以改进模型的分类效果.实验结果表明,本文在logo图像数据集上的分类精确率优于传统的分类方法.本文通过融合多粒度特征的渐进训练策略以及随机拼图生成器的方法实现了对logo图像的高效分类,为解决logo图像分类中存在的问题提供了一种新的思路. 展开更多
关键词 logo图像 细粒度图像分类 渐进训练策略 leakyrelu 注意力机制
下载PDF
基于轻量化卷积神经网络的多肉植物种类识别研究
3
作者 孙公凌云 张靖渝 +7 位作者 连俊博 宁景苑 刘伟立 刘权 王国振 陆诗怡 时鹏辉 楼雄伟 《传感技术学报》 CAS CSCD 北大核心 2023年第12期1916-1927,共12页
目前多肉植物产业在我国发展较快,市场前景广阔,由于其具有品种繁多、形态多变、类间相似度高等特点,导致多肉植物种类辨别难度较大。针对上述问题,提出一种基于改进MobileNet V3网络与迁移学习的多肉植物图像分类方法,将Bottleneck模... 目前多肉植物产业在我国发展较快,市场前景广阔,由于其具有品种繁多、形态多变、类间相似度高等特点,导致多肉植物种类辨别难度较大。针对上述问题,提出一种基于改进MobileNet V3网络与迁移学习的多肉植物图像分类方法,将Bottleneck模块前六层的ReLU激活函数换成LeakyReLU激活函数,优化了SE模块,添加了Dropout层提高模型的泛化性。通过改进MobileNet V3网络对13种多肉植物图像进行种类识别,准确率为97.35%,并且可以实时稳定地对多肉植物图像进行分类,使用Focal Loss代替交叉熵损失函数,达到平衡样本的目的。研究结果表明,利用改进MobileNet V3网络对多肉植物种类识别具有一定可行性。 展开更多
关键词 图像分类 多肉植物图像 深度学习 迁移学习 MobileNet V3 Focal Loss DROPOUT leakyrelu
下载PDF
基于深度学习算法的航拍绝缘子检测 被引量:4
4
作者 高强 汪梦闪 《电工技术》 2021年第3期1-4,共4页
针对无人机航拍图像中绝缘子等设备因背景复杂、过度遮挡而产生的检测准确性差的问题,提出了一种基于CornerNet-Lite网络模型的改进算法。该算法应用LeakyReLU函数设计了更为合理的损失函数,在coco数据集和自建绝缘子数据集上进行试验... 针对无人机航拍图像中绝缘子等设备因背景复杂、过度遮挡而产生的检测准确性差的问题,提出了一种基于CornerNet-Lite网络模型的改进算法。该算法应用LeakyReLU函数设计了更为合理的损失函数,在coco数据集和自建绝缘子数据集上进行试验。对比原网络模型检测结果可知,该方法将绝缘子检测准确率提升至93%,有效解决了绝缘子目标被塔架等间断性遮挡及多目标聚集时模型出现漏检现象的问题,尤其是在目标被过度遮挡时更能体现优势。 展开更多
关键词 CornerNet-Lite 目标检测 绝缘子 leakyrelu
下载PDF
基于改进生成式对抗网络的图像去雾算法研究 被引量:2
5
作者 王铭 姜淑华 +1 位作者 吴杰 王春阳 《长春理工大学学报(自然科学版)》 2021年第2期93-99,共7页
针对传统图像去雾算法存在颜色失真并被雾图先验理论束缚的问题,提出一种基于GAN(Generative Adversarial Networks)的去雾算法Defog-GAN,将雾天图片和普通图片分别送入GAN的生成器与鉴别器,利用卷积神经网络对图像的颜色与纹理信息特... 针对传统图像去雾算法存在颜色失真并被雾图先验理论束缚的问题,提出一种基于GAN(Generative Adversarial Networks)的去雾算法Defog-GAN,将雾天图片和普通图片分别送入GAN的生成器与鉴别器,利用卷积神经网络对图像的颜色与纹理信息特征进行提取,鉴别器最终引导生成器生成去雾图像。以分块输入形式对GAN的鉴别器做了改进,提高了模型训练速度,引入新的激活函数LeakyRelu,使输入在负值上也有一定的输出,加强图像细节的还原。对输出的去雾图像进行局部颜色直方图匹配,增强图像真实度。实验表明,改进后的网络模型缩短了训练时间,且在真实图像中去雾效果更好,主观评价和客观评价优于其他算法。 展开更多
关键词 生成式对抗网络 分块输入 leakyrelu 局部颜色直方图匹配
下载PDF
基于深度学习的佩戴口罩下的人脸识别
6
作者 王欣雅 林泓旭 +2 位作者 吕尚颖 黄睿宸 聂敬儿 《计算机科学与应用》 2023年第8期1576-1587,共12页
深度学习卷积神经网络在图像处理中的应用引起了国内外许多学者的广泛关注。识别和验证有遮挡物下的人脸将是深度学习领域里持续受到关注的课题,我们需要更有效的方法来实现实时佩戴口罩检测和面部识别。从传统的机器学习算法到现在的... 深度学习卷积神经网络在图像处理中的应用引起了国内外许多学者的广泛关注。识别和验证有遮挡物下的人脸将是深度学习领域里持续受到关注的课题,我们需要更有效的方法来实现实时佩戴口罩检测和面部识别。从传统的机器学习算法到现在的深度学习卷积神经网络,图像识别效率、图像识别精度和网络训练速度的优化始终都是第一要义。为解决传统神经网络的梯度消失和网络退化问题,本文提到了一种基于改进型激活函数LeakyReLU的ResNet18残差神经网络的口罩遮挡下的人脸识别方法。利用Python语言构建PyTorch框架下的ResNet18残差神经网络模型,训练结果显示,改进型激活函数LeakyReLU在两轮训练后产生的结果比同等训练条件下ReLU函数的识别精确度高,因此,ResNet18卷积神经网络模型较其他人脸遮挡识别方法在识别准确度上有所提升。 展开更多
关键词 口罩遮挡下的人脸识别 深度学习 卷积神经网络 ResNet18 leakyrelu
下载PDF
基于卷积神经网络的随机梯度下降算法 被引量:72
7
作者 王功鹏 段萌 牛常勇 《计算机工程与设计》 北大核心 2018年第2期441-445,462,共6页
为解决卷积神经网络(CNN)中随机梯度下降算法(SGD)的学习率设置不当对SGD算法的影响,提出一种学习率自适应SGD的更新算法,随着迭代的进行该算法使学习率呈现周期性的改变。针对CNN中Relu激活函数将CNN中的阈值为负的神经元丢弃的缺陷,... 为解决卷积神经网络(CNN)中随机梯度下降算法(SGD)的学习率设置不当对SGD算法的影响,提出一种学习率自适应SGD的更新算法,随着迭代的进行该算法使学习率呈现周期性的改变。针对CNN中Relu激活函数将CNN中的阈值为负的神经元丢弃的缺陷,设计选择Leaky Relu作为激活函数的CNN。实验验证了使用该激活函数的有效性,实验结果表明,采用上述学习率更新算法的SGD可以使网络快速收敛,提高了学习正确率;通过将Leaky Relu激活函数和采用上述学习率更新算法的SGD相结合,进一步提高CNN的学习正确率。 展开更多
关键词 卷积神经网络 随机梯度下降算法 自适应学习率更新算法 leakyrelu激活函数 快速收敛
下载PDF
基于改进DenseNet和迁移学习的变负载滚动轴承故障诊断 被引量:5
8
作者 吕欢 许涛 +2 位作者 麻爱松 李建平 陈玉立 《轻工机械》 CAS 2023年第1期53-58,共6页
由于在实际工作环境下滚动轴承故障样本不足,而且受到环境噪声以及负载变化的影响,故障样本分布存在差异性导致诊断泛化性差,对此课题组提出一种基于改进DenseNet与迁移学习结合的滚动轴承故障诊断方法。对原DenseNet中的ReLU激活函数,... 由于在实际工作环境下滚动轴承故障样本不足,而且受到环境噪声以及负载变化的影响,故障样本分布存在差异性导致诊断泛化性差,对此课题组提出一种基于改进DenseNet与迁移学习结合的滚动轴承故障诊断方法。对原DenseNet中的ReLU激活函数,使用LeakyReLU函数替代,并在全连接层后添加Softmax层进行分类,使提取故障特征更为丰富;为了使轴承信号接近工厂采集的数据,对凯斯西储大学轴承数据集中添加了信噪比为-2 dB的高斯白噪声并进行模拟,经Z-Score归一化处理后转化为二维灰度图作为样本数据。实验结果表明该方法在小样本变负载下的跨域诊断准确率都达到了90%以上,与其他模型对比具有更好的泛化性。 展开更多
关键词 滚动轴承 故障诊断 DenseNet 迁移学习 leakyrelu函数
下载PDF
基于轻量级神经网络的目标检测研究 被引量:2
9
作者 黄志强 李军 张世义 《计算机工程与科学》 CSCD 北大核心 2022年第7期1265-1272,共8页
由于以CSPDarknet53为主干的YOLOv4神经网络参数量巨大,将其移植至手机等小型设备上时会降低其检测精度和速度,为了提高检测速度同时将检测精度控制在合理范围内,提出将原有的53层神经网络改为15层,并对其中的聚类算法进行优化,引入K-me... 由于以CSPDarknet53为主干的YOLOv4神经网络参数量巨大,将其移植至手机等小型设备上时会降低其检测精度和速度,为了提高检测速度同时将检测精度控制在合理范围内,提出将原有的53层神经网络改为15层,并对其中的聚类算法进行优化,引入K-means++聚类算法对数据集进行分析,生成满足检测条件的Anchor Box;使用在负区间带有一定斜率的LeakyReLU激活函数代替存在梯度消失问题的Sigmoid激活函数,从而增强浅层网络的学习能力;同时考虑到Bounding Box与Anchor Box之间的中心距和宽高比具有一定的相关性,提出在原有损失函数的基础上增加相应的惩罚项生成L_(CIoU)损失函数,使损失函数在反向传播时梯度下降的方向性更好。实验结果表明,改进后的CSPDarknet15神经网络在VOC2007数据集上检测的平均精度达到83.94%,检测一幅图像的时间为3625 ms,与CSPDarknet53神经网络相比,检测速度提高了54.43%,能满足小型设备实时检测的速度和精度要求。 展开更多
关键词 YOLOv4神经网络 K-means++聚类算法 leakyrelu激活函数 L CIoU损失函数
下载PDF
基于改进时间信息融合模型的液压管路故障诊断研究
10
作者 高鹏 李开泰 +2 位作者 王雷雷 窦航 江俊松 《机电工程》 CAS 北大核心 2023年第12期1923-1930,共8页
航空发动机液压管路故障信号中存在强大的噪声干扰,导致其诊断模型的故障识别率较低和诊断模型的泛化性不强。针对这一问题,提出了一种基于改进的时间信息融合模型的航空液压管路故障诊断方法。首先,基于循环神经网络原理,设计了正向和... 航空发动机液压管路故障信号中存在强大的噪声干扰,导致其诊断模型的故障识别率较低和诊断模型的泛化性不强。针对这一问题,提出了一种基于改进的时间信息融合模型的航空液压管路故障诊断方法。首先,基于循环神经网络原理,设计了正向和反向的时间信息融合的变形结构,构建出了航空液压管路时间信息融合模型,并通过引入LeakyReLU函数,对模型进行了改进;然后,将实测的一维航空管路时序数据集输入到改进的时间信息融合模型双向循环神经网络(Bi-RNN)中,进行了权重参数的更新;最后,基于同一实测的数据集,分别将其输入到改进的时间信息融合模型、长短期记忆神经网络(LSTM)、循环神经网络(RNN)、支持向量机(SVM)和反向传播神经网络(BPNN)5种故障诊断方法中,进行了训练和对比分析,对相关方法的优越性进行了验证。研究结果表明:利用改进的时间信息融合模型可以对液压管路健康状态和裂纹、凹坑等故障状态进行精准识别,并且准确率可以达到99.2%,总体的准确率和综合指标F 1-sore均可以提高5.1%;在综合性能、准确精度等指标上,改进时间信息融合模型明显优于其他故障诊断模型,可为航空发动机液压管路故障诊断提供一条新的思路,具有一定的工程应用价值。 展开更多
关键词 液压传动回路 时间信息融合模型 航空管路 循环神经网络 leakyrelu函数 权重参数更新
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部