Polymer hole-transport layers(HTLs)are critical components of inverted perovskite solar cells(IPVSCs).Triphenylamine derivatives PTAA(poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine])and Poly-TPD(poly[N,N′-bis(4-butyl...Polymer hole-transport layers(HTLs)are critical components of inverted perovskite solar cells(IPVSCs).Triphenylamine derivatives PTAA(poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine])and Poly-TPD(poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine])have been widely adopted as hole-transport materials due to their perovskite passivation effects and suitable energy levels.However,the passivation mechanism(i.e.,the functional group responsible for perovskite passivation)of triphenylamine derivative polymers remains unclear,hindering the development and application of this polymer type.Here,we develop a novel Poly-TPD derivative,S-Poly-TPD,by replacing the n-butyl functional group of Poly-TPD with an isobutyl group to explore the influence of alkyl groups on HTL performance and top-deposited perovskite properties.Compared with Poly-TPD,the increased CH_(3)-terminal unit density and the decreased spatial distance between the-CH-CH_(3) and-CH_(2)-CH_(3) units and the benzene ring in S-Poly-TPD not only enhanced the hole-transport ability but also improved the perovskite passivation effect,revealing for the first time the role of the alkyl groups in perovskite passivation.As a result,the S-Poly-TPD-based IPVSCs demonstrated high power-conversion efficiencies of 15.1% and 21.3% in wide-bandgap[MAPbI_(2)Br(SCN)0.12]and normal-bandgap[(FAPbI_(3))0.92(MAPbBr_(3))0.08]devices,respectively.展开更多
基金The work was financially supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302007)the Ministry of Science and Technology(Nos.2017YFA0206600,2019YFA 0705900)+3 种基金the Natural Science Foundation of China(Nos.51973063,91733302 and 51803060)the Science and Technology Program of Guangdong Province,China(No.2018A030313045)the Science and Technology Program of Guangzhou,China(No.201904010147).Yue‐Min Xie acknowledged the funding by State Key Lab of Luminescent Materials and Devices,South China Uni-versity of Technology,the Fellowship of China Post-doctoral Science Foundation(No.2020M682703)the National Natural Science Foundation of China(No.52003090).
文摘Polymer hole-transport layers(HTLs)are critical components of inverted perovskite solar cells(IPVSCs).Triphenylamine derivatives PTAA(poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine])and Poly-TPD(poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine])have been widely adopted as hole-transport materials due to their perovskite passivation effects and suitable energy levels.However,the passivation mechanism(i.e.,the functional group responsible for perovskite passivation)of triphenylamine derivative polymers remains unclear,hindering the development and application of this polymer type.Here,we develop a novel Poly-TPD derivative,S-Poly-TPD,by replacing the n-butyl functional group of Poly-TPD with an isobutyl group to explore the influence of alkyl groups on HTL performance and top-deposited perovskite properties.Compared with Poly-TPD,the increased CH_(3)-terminal unit density and the decreased spatial distance between the-CH-CH_(3) and-CH_(2)-CH_(3) units and the benzene ring in S-Poly-TPD not only enhanced the hole-transport ability but also improved the perovskite passivation effect,revealing for the first time the role of the alkyl groups in perovskite passivation.As a result,the S-Poly-TPD-based IPVSCs demonstrated high power-conversion efficiencies of 15.1% and 21.3% in wide-bandgap[MAPbI_(2)Br(SCN)0.12]and normal-bandgap[(FAPbI_(3))0.92(MAPbBr_(3))0.08]devices,respectively.