Magnesium ion-exchanged a-zirconium phosphates(Mg-α-ZrP) with particle sizes of 600 and 80 nm were prepared through the sealed ion-exchange and one-step hydrothermal synthesis methods, respectively. It was found that...Magnesium ion-exchanged a-zirconium phosphates(Mg-α-ZrP) with particle sizes of 600 and 80 nm were prepared through the sealed ion-exchange and one-step hydrothermal synthesis methods, respectively. It was found that larger particles of Mg-α-ZrP had a higher load-carrying capacity than that of smaller particles, whereas smaller Mg-α-ZrP particles had better anti-wear properties than that of larger Mg-α-ZrP particles under mild loads. The correlation between the particle size of the sample and the surface roughness of the friction pair thus seems to be a key factor influencing the performance.展开更多
基金Funded by the Key Program of National Natural Science Foundation of China(No.21436008)the General Program of National Natural Science Foundation of China(No.51372162)+1 种基金Young Scientists Fund of the National Natural Science Foundation of China(No.21506145)the Natural Science Foundation for Young Scientists of Shanxi Province,China(No.2015021032)
文摘Magnesium ion-exchanged a-zirconium phosphates(Mg-α-ZrP) with particle sizes of 600 and 80 nm were prepared through the sealed ion-exchange and one-step hydrothermal synthesis methods, respectively. It was found that larger particles of Mg-α-ZrP had a higher load-carrying capacity than that of smaller particles, whereas smaller Mg-α-ZrP particles had better anti-wear properties than that of larger Mg-α-ZrP particles under mild loads. The correlation between the particle size of the sample and the surface roughness of the friction pair thus seems to be a key factor influencing the performance.