The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for por...The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.展开更多
It is an important subject to probe the structure in the medium by various kinds of detection methods in the geotechnical engineering. Based on the propagation theory of elastic wave in half-space layered medium, the ...It is an important subject to probe the structure in the medium by various kinds of detection methods in the geotechnical engineering. Based on the propagation theory of elastic wave in half-space layered medium, the propagation characteristics of elastic wave in layered medium with different elastic parameters are discussed using dynamic analysis of finite element method. It is known that the S-wave velocity, density and thickness of layer are related to the properties of the elastic wave including waveform characteristics, spectral characteristics and time-frequency characteristics. We pay special attention to the structure with low velocity interlayer. The impact imaging method is applied to the grouting construction of the immersed tube tunnel. Data acquisition and analytical method are introduced in detail. The grouting effects can be qualitatively evaluated by comparing the characteristics of elastic wave before grouting with those after grouting. Finally, a quantitative evaluation is obtained according to the relationship between energy response of elastic wave and impedance ratio.展开更多
With the advantage of fast calculation and map resources on cloud control system(CCS), cloud-based predictive cruise control(CPCC) for heavy trucks has great potential to improve energy efficiency, which is significan...With the advantage of fast calculation and map resources on cloud control system(CCS), cloud-based predictive cruise control(CPCC) for heavy trucks has great potential to improve energy efficiency, which is significant to achieve the goal of national carbon neutrality. However, most investigations focus on the on-board predictive cruise control(PCC) system,lack of research on CPCC architecture under CCS. Besides, the current PCC algorithms have the problems of a single control target and high computational complexity, which hinders the improvement of the control effect. In this paper, a layered architecture based on CCS is proposed to effectively address the realtime computing of CPCC system and the deployment of its algorithm on vehicle-cloud. In addition, based on the dynamic programming principle and the proposed road point segmentation method(RPSM), a PCC algorithm is designed to optimize the speed and gear of heavy trucks with slope information. Simulation results show that the CPCC system can adaptively control vehicle driving through the slope prediction, with fuel-saving rate of 6.17% in comparison with the constant cruise control. Also,compared with other similar algorithms, the PCC algorithm can make the engine operate more in the efficient zone by cooperatively optimizing the gear and speed. Moreover, the RPSM algorithm can reconfigure the road in advance, with a 91% roadpoint reduction rate, significantly reducing algorithm complexity.Therefore, this study has essential research significance for the economic driving of heavy trucks and the promotion of the CPCC system.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
文摘The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.
基金the National Basic Research Program (973) of China(No.2011CB013505)
文摘It is an important subject to probe the structure in the medium by various kinds of detection methods in the geotechnical engineering. Based on the propagation theory of elastic wave in half-space layered medium, the propagation characteristics of elastic wave in layered medium with different elastic parameters are discussed using dynamic analysis of finite element method. It is known that the S-wave velocity, density and thickness of layer are related to the properties of the elastic wave including waveform characteristics, spectral characteristics and time-frequency characteristics. We pay special attention to the structure with low velocity interlayer. The impact imaging method is applied to the grouting construction of the immersed tube tunnel. Data acquisition and analytical method are introduced in detail. The grouting effects can be qualitatively evaluated by comparing the characteristics of elastic wave before grouting with those after grouting. Finally, a quantitative evaluation is obtained according to the relationship between energy response of elastic wave and impedance ratio.
基金supported by the National Key Research and Development Program (2021YFB2501003)the Key Research and Development Program of Guangdong Province (2019B090912001)the China Postdoctoral Science Foundation (2020M680531)。
文摘With the advantage of fast calculation and map resources on cloud control system(CCS), cloud-based predictive cruise control(CPCC) for heavy trucks has great potential to improve energy efficiency, which is significant to achieve the goal of national carbon neutrality. However, most investigations focus on the on-board predictive cruise control(PCC) system,lack of research on CPCC architecture under CCS. Besides, the current PCC algorithms have the problems of a single control target and high computational complexity, which hinders the improvement of the control effect. In this paper, a layered architecture based on CCS is proposed to effectively address the realtime computing of CPCC system and the deployment of its algorithm on vehicle-cloud. In addition, based on the dynamic programming principle and the proposed road point segmentation method(RPSM), a PCC algorithm is designed to optimize the speed and gear of heavy trucks with slope information. Simulation results show that the CPCC system can adaptively control vehicle driving through the slope prediction, with fuel-saving rate of 6.17% in comparison with the constant cruise control. Also,compared with other similar algorithms, the PCC algorithm can make the engine operate more in the efficient zone by cooperatively optimizing the gear and speed. Moreover, the RPSM algorithm can reconfigure the road in advance, with a 91% roadpoint reduction rate, significantly reducing algorithm complexity.Therefore, this study has essential research significance for the economic driving of heavy trucks and the promotion of the CPCC system.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.