Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer ...Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer from irreversible structural degradation,fast capacity attenuation as well as seriously reduced safety in their practical applications.Doping strategies with different elements have been employed to address the above issues.In this review,we summarize the research advances of the elemental doping in a Ni-rich layered oxide cathode.The experimental methods and dopant selection rules are briefly introduced.Then we discuss here the effects of the elemental doping from the aspects of the crystal lattice,electronic structure,nanomorphology,and surface stability.In addition,this review surveys the first-principles calculation and advanced structural characterization techniques,which have played important roles in elucidating the structure-performance correlations.Finally,perspectives regarding the future of doping strategy are given.展开更多
The preparation of ZnAlLa-hydrotalcite-like compounds [ZnAlLa-HTLcs] wasstudied. ZnAlLa-HTLcs were synthesized by a method of variable pH with the raw materials ofZn(NO_3)_2, Al(NO_3)_3, La(NO_3)_3, and NaOH. The eS...The preparation of ZnAlLa-hydrotalcite-like compounds [ZnAlLa-HTLcs] wasstudied. ZnAlLa-HTLcs were synthesized by a method of variable pH with the raw materials ofZn(NO_3)_2, Al(NO_3)_3, La(NO_3)_3, and NaOH. The eS'ccts of some factors (i.e. pH values, the moleratio of Al^(3+) to La^(3+), temperature and the period of hydrothermal treatment) on thepreparation of HTLcs were discussed systematically. XRD, TG-DTA, FT-IR spectroscopy, and ICP wereperformed to characterize ZnAlLa-HTLcs samples, and the thermal stability of HTLcs was alsodiscussed. It was shown that unique ZnAlLa-HTLcs with high crystallinity can be prepared, under theconditions of pH = 5.5-6.5, n(Zn^(2+))/n(Al^(3+) + La^(3+))=2 and the atomic ratio of La^(3+) toAl^(3+) ranging from 0.07 to 2, hydrothermal treatment at 120 ℃ for 5 h. When the calcination ofthe HTLcs is performed at temperatures above 200 ℃, ZnO phase is detected with Al_2O_3 and La_2O_3spreading on its top. The complex metal oxides derived from ZnAlLa-HTLcs at 500 ℃ have highercatalytic activity and selectivity than those from ZnAl-HTLcs for the esterification of acetic acidwith n-butanol under the same reaction conditions.展开更多
Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was ac...Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was achieved at mild condition using cetyltfimethylammonium bromide as structure-directing agents. The resulting samples were characterized by XRD, SEM, FTIR nitrogen adsorption-desorption isotherms and catalytic performance in bulky molecular involved reaction. The results revealed that synthesized mesoporous materials derived from the silinaite exhibited an ordered hexagonal crystal structure with average pore diameter 2.7 nm and BET surface area 817m^2/g. The SDM-supported ZnCl2 catalyst, prepared by impregnationevaporation method, retained the mesoporous structure and showed high selectivity in alkylation of benzene with benzyl chloride.展开更多
基金funding support from the National Key Research and Development Program of China(grant no.2020YFB2007400)the National Natural Science Foundation of China(grant no.22075317)the Strategic Priority Research Program(B)(grant no.XDB07030200)of the Chinese Academy of Sciences.
文摘Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer from irreversible structural degradation,fast capacity attenuation as well as seriously reduced safety in their practical applications.Doping strategies with different elements have been employed to address the above issues.In this review,we summarize the research advances of the elemental doping in a Ni-rich layered oxide cathode.The experimental methods and dopant selection rules are briefly introduced.Then we discuss here the effects of the elemental doping from the aspects of the crystal lattice,electronic structure,nanomorphology,and surface stability.In addition,this review surveys the first-principles calculation and advanced structural characterization techniques,which have played important roles in elucidating the structure-performance correlations.Finally,perspectives regarding the future of doping strategy are given.
基金Supported by Shanxi Province Natural Science Funds.(20001015)
文摘The preparation of ZnAlLa-hydrotalcite-like compounds [ZnAlLa-HTLcs] wasstudied. ZnAlLa-HTLcs were synthesized by a method of variable pH with the raw materials ofZn(NO_3)_2, Al(NO_3)_3, La(NO_3)_3, and NaOH. The eS'ccts of some factors (i.e. pH values, the moleratio of Al^(3+) to La^(3+), temperature and the period of hydrothermal treatment) on thepreparation of HTLcs were discussed systematically. XRD, TG-DTA, FT-IR spectroscopy, and ICP wereperformed to characterize ZnAlLa-HTLcs samples, and the thermal stability of HTLcs was alsodiscussed. It was shown that unique ZnAlLa-HTLcs with high crystallinity can be prepared, under theconditions of pH = 5.5-6.5, n(Zn^(2+))/n(Al^(3+) + La^(3+))=2 and the atomic ratio of La^(3+) toAl^(3+) ranging from 0.07 to 2, hydrothermal treatment at 120 ℃ for 5 h. When the calcination ofthe HTLcs is performed at temperatures above 200 ℃, ZnO phase is detected with Al_2O_3 and La_2O_3spreading on its top. The complex metal oxides derived from ZnAlLa-HTLcs at 500 ℃ have highercatalytic activity and selectivity than those from ZnAl-HTLcs for the esterification of acetic acidwith n-butanol under the same reaction conditions.
基金Fund supports by the National Natural Science Foundation of China (No,20541002)Zhejiang Provincial Natural Science Foundation (No.Y405064) are acknowledged.
文摘Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was achieved at mild condition using cetyltfimethylammonium bromide as structure-directing agents. The resulting samples were characterized by XRD, SEM, FTIR nitrogen adsorption-desorption isotherms and catalytic performance in bulky molecular involved reaction. The results revealed that synthesized mesoporous materials derived from the silinaite exhibited an ordered hexagonal crystal structure with average pore diameter 2.7 nm and BET surface area 817m^2/g. The SDM-supported ZnCl2 catalyst, prepared by impregnationevaporation method, retained the mesoporous structure and showed high selectivity in alkylation of benzene with benzyl chloride.