期刊文献+
共找到538篇文章
< 1 2 27 >
每页显示 20 50 100
Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition 被引量:9
1
作者 Yi-Feng Liu Kai Han +13 位作者 Dan-Ni Peng Ling-Yi Kong Yu Su Hong-Wei Li Hai-Yan Hu Jia-Yang Li Hong-Rui Wang Zhi-Qiang Fu Qiang Ma Yan-Fang Zhu Rui-Ren Tang Shu-Lei Chou Yao Xiao Xiong-Wei Wu 《InfoMat》 SCIE CSCD 2023年第6期1-43,共43页
Sodium-ion batteries(SIBs)are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries(LIBs)because of their similar working principle to LIBs,cost-effectiveness,and sustainabl... Sodium-ion batteries(SIBs)are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries(LIBs)because of their similar working principle to LIBs,cost-effectiveness,and sustainable availability of sodium resources,especially in large-scale energy storage systems(EESs).Among various cathode candidates for SIBs,Na-based layered transition metal oxides have received extensive attention for their relatively large specific capacity,high operating potential,facile synthesis,and environmental benignity.However,there are a series of fatal issues in terms of poor air stability,unstable cathode/electrolyte interphase,and irreversible phase transition that lead to unsatisfactory battery performance from the perspective of preparation to application,outside to inside of layered oxide cathodes,which severely limit their practical application.This work is meant to review these critical problems associated with layered oxide cathodes to understand their fundamental roots and degradation mechanisms,and to provide a comprehensive summary of mainstream modification strategies including chemical substitution,surface modification,structure modulation,and so forth,concentrating on how to improve air stability,reduce interfacial side reaction,and suppress phase transition for realizing high structural reversibility,fast Na+kinetics,and superior comprehensive electrochemical performance.The advantages and disadvantages of different strategies are discussed,and insights into future challenges and opportunities for layered oxide cathodes are also presented. 展开更多
关键词 air stability interface chemistry layered oxide cathodes phase transition sodium-ion batteries
原文传递
Phase Equilibria Constraints on Relations of Ore-bearing Intrusions with Flood Basalts in the Panxi Region,Southwestern China 被引量:7
2
作者 ZHANG Zhaochong HAO Yanli +2 位作者 AI Yu LI Yin ZHAO Li 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第2期295-309,共15页
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small ultramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PG... There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small ultramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-PI-OI-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and low-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limahe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basalts. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts. 展开更多
关键词 layered intrusions phase equalibria Cu-Ni sulfide deposit V-Ti-Fe oxide deposit Emeishan
下载PDF
Oxide cathodes for sodium-ion batteries:Designs,challenges,and perspectives 被引量:8
3
作者 Tao Chen Baixue Ouyang +3 位作者 Xiaowen Fan Weili Zhou Weifang Liu Kaiyu Liu 《Carbon Energy》 SCIE CAS 2022年第2期170-199,共30页
Sodium-ion batteries(SIBs),which are an alternative to lithium-ion batteries(LIBs),have attracted increasing attention due to their low cost of Na resources and similar Na storage mechanism to LIBs.Compared with anode... Sodium-ion batteries(SIBs),which are an alternative to lithium-ion batteries(LIBs),have attracted increasing attention due to their low cost of Na resources and similar Na storage mechanism to LIBs.Compared with anode materials and electrolytes,the development of cathode materials lags behind.Therefore,the key to improving the specific energy and promoting the application of SIBs is to develop high-performance sodium intercalation cathode materials.Transition-metal oxides are one of the most promising cathode materials for SIBs owing to their excellent energy density,high specific discharge capacity,and environmentally friendly nature.In the present work,the latest progress in the research of transition-metal oxides is summarized.Moreover,the existing challenges are discussed,and a series of strategies are proposed to overcome these drawbacks.This review aims at providing guidance for the development of metal oxides in the next stage. 展开更多
关键词 cathodes layered oxides oxygen reduction phase transition
下载PDF
Advances in bio-inspired electrocatalysts for clean energy future 被引量:3
4
作者 Jing-Wen Duan Mu Min-Rui Gao 《Nano Research》 SCIE EI CSCD 2024年第2期515-533,共19页
Electrocatalysis can enable efficient energy storage and conversion and thus is an effective way to achieve carbon neutrality.The unique structure and function of organisms can offer many ideas for the design of elect... Electrocatalysis can enable efficient energy storage and conversion and thus is an effective way to achieve carbon neutrality.The unique structure and function of organisms can offer many ideas for the design of electrocatalysts,which has become one of the most promising research directions.Recently,the understanding of the mechanism of bio-inspired electrocatalysis has become clearer,which has promoted the design of bio-inspired catalysts and catalytic systems.Various bio-inspired catalysts(enzyme-like catalysts,layered porous catalysts,superhydrophobic/superhydrophilic surfaces,and so on)have been developed to enable efficient electrocatalytic reactions.Herein,we discuss the key advances in the field of bio-inspired electrocatalysts progressed in recent years.First,the role of bio-inspiration in increasing the intrinsic activity and number of active sites of catalysts is introduced.Then,the structure and mechanism of layered porous catalytic systems that mimic biological transport systems are comprehensively discussed.Subsequently,the design of three-phase interfaces from micro-nanoscale to atomic scale is highlighted,including the wettability of the electrode surface and the transport system near the electrode.We conclude the review by identifying challenges in bio-inspired electrocatalysts and providing insights into future prospects for the exciting research field. 展开更多
关键词 bio-inspired electrocatalysts active sites layered porous structure three-phase interface
原文传递
Phase Behavior of Rare Earth Manganites 被引量:5
5
作者 NaokiKamegashira HiromiNakano +1 位作者 GangChen JianMeng 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期582-585,共4页
Among complex oxides containing rare earth and manganese BaLn_2Mn_2O_7 (Ln=rare earth) with the layered perovskite type and Ln_2(Mn, M)O_7 with pyrochlore-related structure were studied since these compounds show many... Among complex oxides containing rare earth and manganese BaLn_2Mn_2O_7 (Ln=rare earth) with the layered perovskite type and Ln_2(Mn, M)O_7 with pyrochlore-related structure were studied since these compounds show many kinds of phases and unique phase transitions. In BaLn_2Mn_2O_7 there appear many phases, depending on the synthetic conditions for each rare earth. The tetragonal phase of so-called Ruddlesden-Popper type is the fundamental structure and many kinds of deformed modification of this structure are obtained. For BaEu_2Mn_2O_7 at least five phases have been identified from the results of X-ray diffraction analysis with the space group P4_2/mnm, Fmmm, Immm and A2/m in addition to the fundamental tetragonal I4/mmm phase. In the pyrochlore-related type compounds, Ln_2Mn_(2-x)M_xO_7 (M=Ta, Nb, W etc), there also appear several phases with different crystal structures. With regard to every rare earth, Ln_2MnTaO_7 phase is stable only for excess Ta and can be obtained under high oxygen partial pressure process. This group has trigonal structure with zirkelite type (P3_121 space group). On the other hand Ln_2Mn_(2/3)Nb_(4/3)O_7 phase has monoclinic (C2/c space group) and zirconolite type structure. All of these structural models have the fundamental structure based on HTB (hexagonal tungsten bronze) layers formed by the arrangement of oxygen octahedra. 展开更多
关键词 phase behavior layered perovskite pyrochlore-related structure rare earth manganese oxide
下载PDF
The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells 被引量:1
6
作者 Rui Liu Yue Yu +7 位作者 Lu Deng Maoxia Xu Haorong Ren Wenjie Luo Xudong Cai Zhenyu Li Jingyu Chen Hua Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第12期294-298,共5页
BA_(2)(MA)_(n-1)Pb_nI_(3n+1)series low-dimensional(2D)perovskites have been widely investigated for their re markable environmental stability,but still suffer the poor light absorption and disordered phase distri buti... BA_(2)(MA)_(n-1)Pb_nI_(3n+1)series low-dimensional(2D)perovskites have been widely investigated for their re markable environmental stability,but still suffer the poor light absorption and disordered phase distri bution,hindering their practical applications.In this work,we combine the introduction of FA and the addition of PbCl_(2)to optimize the film quality,strengthen the light absorption,regulate internal phase distribution,and promote carrier transport inside 2D perovskite films.The incorporation of FA promote sufficient light absorption and improve the film crystallinity.Furthermore,the addition of Pb Cl_(2)elimi nates the low n phase(n=1)and suppresses the forming of the low n phase of n=2,enhancing the film conductivity and diminishing carrier recombination.The synergistic of A-site cation engineering and phase manipulation achieves a high efficiency of 16.48%.Importantly,the synergistic prepared perovskite film does not show any changes after 60 days in the air with an average humidity of 57%±3%,and the corresponding solar cell maintains 85%of the original efficiency after more than 800 h,demonstrating remarkable environmental stability.The results indicate that the synergistic of A-site cation engineering and phase manipulation is promising for producing superior efficiency,along with satisfying humidity stability. 展开更多
关键词 phase control layered perovskite Synergistic effect Low n phase Stability
原文传递
钠离子电池层状正极材料的相变研究进展 被引量:1
7
作者 樊晓琦 童逸凡 +1 位作者 王梦雅 李世友 《盐湖研究》 CAS CSCD 2024年第4期82-90,共9页
近年来,随着锂离子电池的大规模商业化应用,锂资源储量短缺和价格上涨的问题引起了广泛关注。钠离子电池因其钠储量丰富、能量密度可观、成本低廉等优势,在未来大规模储能装置的应用中前景广阔。正极材料是影响钠离子电池性能的关键因素... 近年来,随着锂离子电池的大规模商业化应用,锂资源储量短缺和价格上涨的问题引起了广泛关注。钠离子电池因其钠储量丰富、能量密度可观、成本低廉等优势,在未来大规模储能装置的应用中前景广阔。正极材料是影响钠离子电池性能的关键因素,其中层状氧化物正极材料因具有高比容量、高工作电压、环境友好等优点而备受青睐。然而由于其脱嵌钠过程中易发生有害的相变导致电池的循环性能欠佳,制约着钠离子电池规模化应用于储能体系。因此,文章介绍了层状氧化物正极材料的结构分类,概述了材料在钠脱嵌时发生的相变历程,揭示层状氧化物正极材料相变机理及其对电化学性能的影响,最后提出了可以抑制相变的改性策略,并对层状氧化物正极材料的应用前景进行了展望。 展开更多
关键词 钠离子电池 正极材料 层状氧化物 相变 改性
下载PDF
元素掺杂对钠离子电池锰基层状氧化物相变的影响 被引量:4
8
作者 江浩然 钱广东 +3 位作者 刘瑞 刘伟迪 陈亚楠 胡文彬 《Science China Materials》 SCIE EI CAS CSCD 2023年第12期4542-4549,共8页
由于对可再生能源和清洁能源需求的空前增长,以及锂资源的短缺和分布不均,钠离子电池作为有竞争力的替代品越来越受到关注.钠离子层状氧化物材料,特别是锰层状氧化物材料,如P2-Na_(x)MnO_(2),P′2-Na_(x)MnO_(2),P2-Na_(0.67)Ni_(0.33)M... 由于对可再生能源和清洁能源需求的空前增长,以及锂资源的短缺和分布不均,钠离子电池作为有竞争力的替代品越来越受到关注.钠离子层状氧化物材料,特别是锰层状氧化物材料,如P2-Na_(x)MnO_(2),P′2-Na_(x)MnO_(2),P2-Na_(0.67)Ni_(0.33)Mn_(0.67O2),O3-NaNi_(0.5)Mn_(0.5O2)等,具有结构简单、易于合成的优点,因此表现出较高的商业化生产可行性.然而,这些材料普遍面临的挑战是不可逆相变引起的不良循环性能.元素掺杂是抑制不可逆相变,改善材料性能的有效策略.本文综述了锰基层状氧化物材料中元素掺杂的研究进展,并探讨了元素掺杂对晶体结构和结构演化的影响. 展开更多
关键词 manganese-based layered oxide element doping phase transitions sodium-ion batteries cathodes
原文传递
Ternary-phase layered cathodes toward ultra-stable and highrate sodium ion storage 被引量:1
9
作者 Wen-Ji Yin Pei-Dan Su +8 位作者 Qi Lu Xiao-Qiong Li Ji-Ming Peng Teng-Fei Zhou Ge-Meng Liang Yu-Liang Cao Hong-Qiang Wang Qing-Yu Li Si-Jiang Hu 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1589-1598,共10页
With the shortage of lithium resources,sodiumion batteries(SIBs)are considered one of the most promising candidates for lithium-ion batteries.P2-type and O3-type layered oxides are one of the few cathodes that can acc... With the shortage of lithium resources,sodiumion batteries(SIBs)are considered one of the most promising candidates for lithium-ion batteries.P2-type and O3-type layered oxides are one of the few cathodes that can access high energy density.However,they usually exhibit structural change,capacity decay,and slow Na ion kinetic.Herein,we present layered ternary-phase cathodes with P2,P3 and O3 phases by a lattice doping strategy,which is demonstrated by X-ray diffraction(XRD)refinement.Combining the characteristics of P2,P3 and O3 phases,the layered composites show performance improvement during long-term battery cycling.In particular,Na_(0.7)Li_(0.1)Co_(0.3-)Fe_(0.3)Mn_(0.3)O_(2)(NLCFM)delivers a reversible capacity of120.1 mAh·g^(-1)at 0.1C(1.0C=175 mA·g^(-1))with a superior capacity retention of 72.5%after 1000 cycles at10.0C.This work offers insights into the development of advanced cathode materials for SIBs. 展开更多
关键词 Sodium-ion battery Cathode material layered oxides Lattice doping Mixed phase
原文传递
Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation 被引量:3
10
作者 Zahir Muhammad Kejun Mu +6 位作者 Haifeng Lv Chuanqiang Wu Zia ur Rehman Muhammad Habib Zhe Sun Xiaojun Wu Li Song 《Nano Research》 SCIE EI CAS CSCD 2018年第9期4914-4922,共9页
Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in ... Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in comparison with the pristine material. Among them, electron-doped engineering induced by intercalation is an efficient route to modulate electronic states in 2D layers. Herein, we demonstrate a semiconducting to metallic phase transition in zirconium diselenide (ZrSe2) single crystals via controllable incorporation of copper (Cu) atoms. Our angle resolved photoemission spectroscopy (ARPES) measurements and first-principles density functional theory (DFT) calculations dearly revealed the emergence of conduction band dispersion at the M/L point of the Brillouin zone due to Cu-induced electron doping in ZrSe2 interlayers. Moreover, electrical measurements in ZrSe2 revealed semiconducting behavior, while the Cu-intercalated ZrSe2 exhibited a linear current-voltage curve with metallic character. The atomic intercalation approach may have high potential for realizing transparent electron-doping systems for many specific 2D-based nanoelectronic applications. 展开更多
关键词 layered materials phase transition angle resolved photoemission spectroscopy electron doping
原文传递
O3型层状过渡金属氧化物正极材料高电压稳定性研究
11
作者 张博杨 滕彦梅 《石油化工高等学校学报》 CAS 2024年第6期52-61,共10页
钠离子电池(SIBs)被认为是一种有前途的大规模储能技术,O3型层状过渡金属氧化物因其优异的比容量成为最有前景的SIBs正极材料之一。然而,层状过渡金属氧化物在充电至高电压时稳定性较差,影响材料的实际应用。通过SEM、TEM以及原位XRD技... 钠离子电池(SIBs)被认为是一种有前途的大规模储能技术,O3型层状过渡金属氧化物因其优异的比容量成为最有前景的SIBs正极材料之一。然而,层状过渡金属氧化物在充电至高电压时稳定性较差,影响材料的实际应用。通过SEM、TEM以及原位XRD技术对O3‐NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)材料进行了表征,并对其电化学性能进行测试,探究了该材料微观结构与稳定性的内在关系。结果表明,该材料的相变导致Na^(+)扩散系数降低,在4.1 V以上的高电压时发生的不可逆P3-O3´相变使Na^(+)扩散系数降低至少5个数量级,具体表现为内阻显著增加;O3´相在放电过程中诱导P´3相的出现,使材料偏离充电时经历的路径,降低材料的循环稳定性。 展开更多
关键词 钠离子电池 层状氧化物 高电压 稳定性 相变
下载PDF
五相混合励磁双凸极电机多目标分层分期优化设计
12
作者 赵耀 徐笠 +2 位作者 李东东 张旭飞 林顺富 《电工技术学报》 EI CSCD 北大核心 2024年第22期7045-7058,共14页
五相定子槽口永磁型混合励磁双凸极电机定子槽内绕组与永磁体的耦合对优化设计提出了更高的要求,为进一步提升此类电机的功率密度和过载能力,该文提出一种五相20/18极的拓扑结构,对电机的空载特性和功率特性进行分析,确定初始优化参数... 五相定子槽口永磁型混合励磁双凸极电机定子槽内绕组与永磁体的耦合对优化设计提出了更高的要求,为进一步提升此类电机的功率密度和过载能力,该文提出一种五相20/18极的拓扑结构,对电机的空载特性和功率特性进行分析,确定初始优化参数和目标后进行六参数四目标的分层分期优化。首先,在电机直流饱和前提下,通过槽满率和绕组电流密度的限制提出基本的约束条件并合理分配好定子槽面积;其次,结合正交试验设计法和综合灵敏度分析对电机的本体结构参数进行分层优化,通过有限元分析建立高敏感层参数的数据库并建立数学模型,在此基础上运用改进的非支配排序遗传算法对模型实现分期优化设计,引入佳点集并在算法迭代前期基于线性排名加快收敛速度,在迭代后期施加均值约束避免畸形解,与其他智能算法对比验证了改进算法的优越性;最后,根据优化结构制造实验样机进行实验,验证了所提优化算法的可行性与有效性。 展开更多
关键词 定子槽口永磁 混合励磁 槽面积 多目标优化 分层分期
下载PDF
Approaching Ultimate Synthesis Reaction Rate of Ni-Rich Layered Cathodes for Lithium-Ion Batteries
13
作者 Zhedong Liu Jingchao Zhang +9 位作者 Jiawei Luo Zhaoxin Guo Haoran Jiang Zekun Li Yuhang Liu Zijing Song Rui Liu Wei-Di Liu Wenbin Hu Yanan Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期392-402,共11页
Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,slu... Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries. 展开更多
关键词 Nickel-rich layered oxides High-temperature shock Solid reaction kinetics phase transition Reaction rate
下载PDF
Early-stage latent thermal failure of single-crystal Ni-rich layered cathode
14
作者 Xiao Han Ruoyu Xu +6 位作者 Yan Li Yang Ding Manchen Zhang Bo Wang Xiaoxing Ke Manling Sui Pengfei Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期578-587,共10页
High nickel content worsens the thermal stability of layered cathodes for lithium-ion batteries,raising safety concerns for their applications.Thoroughly understanding the thermal failure process can offer valuable gu... High nickel content worsens the thermal stability of layered cathodes for lithium-ion batteries,raising safety concerns for their applications.Thoroughly understanding the thermal failure process can offer valuable guidance for material optimization on thermal stability and new opportunities in monitoring battery thermal runaway(TR).Herein,this work comprehensively investigates the thermal failure process of a single-crystal nickel-rich layered cathode and finds that the latent thermal failure starts at∼120℃far below the TR temperature(225℃).During this stage of heat accumulation,sequential structure transition is revealed by atomic resolution electron microscopy,which follows the layered→cation mixing layered→LiMn_(2)O_(4)-type spinel→disordered spinel→rock salt.This progression occurs as a result of the continuous migration and densification of transition metal cations.Phase transition generates gaseous oxygen,initially confined within the isolated closed pores,thereby not showing any thermal failure phenomena at the macro-level.Increasing temperature leads to pore growth and coalescence,and eventually to the formation of open pores,causing oxygen gas release and weight loss,which are the typical TR features.We highlight that latent thermal instability occurs before the macro-level TR,suggesting that suppressing phase transitions caused by early thermal instability is a crucial direction for material optimization.Our findings can also be used for early warning of battery thermal runaway. 展开更多
关键词 Thermal runaway Nickel-rich layered cathode Transmission electron microscopy Lithium-ion battery phase transition
下载PDF
Dual-function protective layer for highly reversible Zn anode
15
作者 Jiaming Li Hanhao Liang +6 位作者 Yini Long Xiao Yu Jiaqi Li Nan Li Junyi Han Jianglin Wang Zhanhong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期12-23,共12页
The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based... The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries. 展开更多
关键词 Protection layer Zn-Al-In layered double oxide Captures and anchors SO_(4)^(2-) Zn-In alloy phase Zn metal anode
下载PDF
Lowering Sodium-Storage Lattice Strains of Layered Oxide Cathodes by Pushing Charge Transfer on Anions
16
作者 Na Li Wen Yin +4 位作者 Baotian Wang Fangwei Wang Xiaoling Xiao Jinkui Zhao Enyue Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期99-106,共8页
Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extracti... Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extraction process,resulting in large lattice strains which are the origin of cycledstructure degradations.Here,we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions(O^(2-)).Specifically,the designed O3-type Ru-based model compound,which shows an increased charge transfer on anions,displays retarded O3-P3-O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy,in situ X-ray diffraction and geometric phase analysis.Meanwhile,the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84%and ultralow voltage decay of 0.2 mV/cycle after 300 cycles.More broadly,our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’redox activity and Nadiffusion kinetics. 展开更多
关键词 anionic redox reaction lattice strains layered oxide cathodes phase transitions sodium-ion battery
下载PDF
Achieving structurally stable O3-type layered oxide cathodes through site-specific cation-anion co-substitution for sodium-ion batteries
17
作者 Yihao Shen Chen Cheng +5 位作者 Xiao Xia Lei Wang Xi Zhou Pan Zeng Jianrong Zeng Liang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期411-418,I0011,共9页
O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrolla... O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries O3-type layered oxides Site-specific co-doping phase transition
下载PDF
The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries 被引量:3
18
作者 Feng Wu Na Liu +9 位作者 Lai Chen Ning Li Jinyang Dong Yun Lu Guoqiang Tan Mingzhe Xu Duanyun Cao Yafei Liu Yanbin Chen Yuefeng Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期351-358,I0008,共9页
Ni-rich layered cathode is regarded as one of the most promising candidates to achieve lithium-ion batteries (LIBs) with high energy density. However, due to the irreversible phase transformation (IPT) and its eventua... Ni-rich layered cathode is regarded as one of the most promising candidates to achieve lithium-ion batteries (LIBs) with high energy density. However, due to the irreversible phase transformation (IPT) and its eventual propagation from surface to the bulk of the material, Ni-rich layered cathode typically suffers from severe capacity fading, structure failure, and thermal instability, which greatly hinders its mass adoption. Hence, achieving an in-depth understanding of the IPT propagation mechanism in Ni-rich layered cathode is crucial in addressing these issues. Herein, the triggering factor of IPT propagation in Ni-rich cathode is verified to be the initial surface disordered cation mixing domain covered by a thin rock-salt phase, instead of the rock-salt phase itself. According to the density functional theory (DFT) results, it is further illustrated that the metastable cation mixing domain possesses a lower Ni migration energy barrier, which facilitates the migration of Ni ions towards the Li slab, and thus driving the propagation of IPT from surface to the bulk of the material. This finding clarifies a prevailing debate regarding the surface impurity phases of Ni-rich cathode material and reveals the origin of IPT propagation, which implies the principle and its effectiveness of tuning the surface microstructure to address the structural and thermal instability issue of Ni-rich layered cathode materials. 展开更多
关键词 Lithium-ion battery Nickel-rich layered cathode phase transformation propagation Cation-mixing domain Rock-salt phase
下载PDF
Layered buserite Mg-Mn oxide cathode for aqueous rechargeable Mg-ion battery 被引量:2
19
作者 Caiyun Sun Hailian Wang +10 位作者 Feixiang Yang Aitao Tang Guangsheng Huang Lingjie Li Zhongting Wang Baihua Qu Chaohe Xu Shuangshuang Tan Xiaoyuan Zhou Jingfeng Wang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期840-850,共11页
Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor M... Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor Mg^(2+)migration kinetics during the Mg^(2+)intercalation/extraction still hinders the progress of developing suitable cathode materials.Herein,a layered buserite Mg-Mn oxide(MMO)material with large interlayer space(~9.70A)and low-crystalline structure is studied as a high-performance cathode in ARMIBs.Compared with the counterpart,the Mg^(2+)migration kinetics of the MMO cathode can be enhanced by its unique structure(bigger interlayer spacing and low-crystalline structure).The layered buserite MMO as a high-performance ARMIBs cathode exhibits high Mg storage capacity(50 mAg^(-1):169.3 mAh g^(-1)),excellent rate capability(1000 mAg^(-1):98.3 mAh g^(-1)),and fast Mg^(2+)migration(an average diffusion coefficient:~4.21×10-^(10)cm^(2)s^(-1))in 0.5 M MgCl_(2)aqueous electrolyte.Moreover,the MMO-1//AC full battery achieved a high discharge capacity(100 mAg^(-1):111 mAh g^(-1)),and an ignored fading over 5000 cycles(1000 mAg^(-1)).Therefore,layered Mg-Mn oxide with large interlayer space may break a new path to develop the promising ARMIBs. 展开更多
关键词 layered buserite phase Low-crystalline Mg-Mn oxide Fast Mg ion migration kinetic Aqueous Mg-ion battery
下载PDF
层状前体法制备的钴尖晶石铁氧体纳米颗粒的磁性能 被引量:3
20
作者 祁欣 陈秀霞 +1 位作者 周小多 李峰 《磁性材料及器件》 CAS CSCD 2008年第1期18-20,27,共4页
采用化学共沉淀的层状前(驱)体法制备出不同Co含量的Co尖晶石铁氧体前体,经900℃焙烧制得Co铁氧体纳米粉体。利用X射线衍射(XRD)分析Co铁氧体前体及铁氧体粉末晶体结构,利用振动样品磁强计(VSM)测量了样品的磁性能。结果表明,当Co2+/Fe2... 采用化学共沉淀的层状前(驱)体法制备出不同Co含量的Co尖晶石铁氧体前体,经900℃焙烧制得Co铁氧体纳米粉体。利用X射线衍射(XRD)分析Co铁氧体前体及铁氧体粉末晶体结构,利用振动样品磁强计(VSM)测量了样品的磁性能。结果表明,当Co2+/Fe2+/Fe3摩尔配比分别为(a)1/3/1、(b)3/5/2、(c)1.92/1/2、(d)2/1/1、(e)3/1/1时均可以制得具有层状结构的前驱体,高温焙烧产物亦为尖晶石结构的Co铁氧体。分析样品的Co含量发现,不同投料摩尔比的前体经过高温焙烧后得到的产物相成分并不完全相同,只有当Co2+/(Fe2++Fe3+)接近尖晶石的化学计量比1/2时,制得的样品为单一晶相。且当化学计量比M2+/M3+接近1/2时矫顽力可达最大值166kA/m,饱和磁化强度和剩余磁化强度也出现最大值,分别为72.63A·m2/kg和23.37A·m2/kg。 展开更多
关键词 Co铁氧体纳米颗粒 层状前(驱)体 相成分 磁性能
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部