Electrochemical sensing of carcinoembryonic antigen(CEA)on a gold electrode modified by the se- quential incorporation of the mediator,thionine(Thi),and gold nanoparticles(nano-Au),through co- valent linkage and elect...Electrochemical sensing of carcinoembryonic antigen(CEA)on a gold electrode modified by the se- quential incorporation of the mediator,thionine(Thi),and gold nanoparticles(nano-Au),through co- valent linkage and electrostatic interactions onto a self-assembled monolayer configuration is de- scribed in this paper.The enzyme,horseradish peroxidase(HRP),was employed to block the possible remaining active sites of the nano-Au monolayer,avoid the non-specific adsorption,instead of bovine serum albumin(BSA),and amplify the response of the antigen-antibody reaction.Electrochemical ex- periments indicated highly efficient electron transfer by the imbedded Thi mediator and adsorbed nano-Au.The HRP kept its activity after immobilization,and the studied electrode showed sensitive response to CEA and high stability during a long period of storage.The working range for the system was 2.5 to 80.0 ng/mL with a detection limit of 0.90 ng/mL.The model membrane system in this work is a potential biosensor for mimicking the other immunosensor and enzyme sensor.展开更多
Layer-by-layer (LbL) strategy has been developed to form bulk heterojunction (BHJ) structure for processing efficient organic solar cells (OSCs). Herein, LbL slot-die coating with twin boiling point solvents (TBPS) st...Layer-by-layer (LbL) strategy has been developed to form bulk heterojunction (BHJ) structure for processing efficient organic solar cells (OSCs). Herein, LbL slot-die coating with twin boiling point solvents (TBPS) strategy was developed to fabricate highly efficient OSCs, which matches with large-scale, high throughput roll-to-roll (R2R) industrialized mass process. The TBPS strategy could produce high-quality thin film without any additive, leading to the optimized vertical phase separation with interpenetrating nanostructures, as well as the enhanced charge transport and extraction. Thus, the power conversion efficiency up to 14.42% was achieved for [(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo [1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)]:2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4″,5″]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene)) bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (PM6:Y6) OSCs fabricated via sequentially LbL slot-die coating using the TBPS strategy under ambient condition. The research provides a potential route for industrialized production of high-efficiency and large-area OSC devices.展开更多
A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. ...A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. Con- ventional polyelectrolyte multilayers of PAH/PVS are usually fabricated through electrostatic layer-by-layer(LbL) assembly, resulting in poor stability, especially in basic solutions, which leads to the urgent demand for converting weak electrostatic interactions into covalent bonds to enhance the stability of the multilayers. This stability problem has been ultimately addressed by post-infiltrating a photosensitive cross-linking agent, 4,4'-diazostilbene-2,2'- disulfonie acid disodium salt(DAS), into the LbL assembled films to initiate the photochemical reaction to cross-link the multilayers. The obviously improved stability of the photo-cross-linked multilayers was demonstrated through experiments with basic solution treatments. Compared to the complete decomposition of uncross-linked multilayers in basic solution, over 74.4% of the covalently cross-linked multilayers were retained under the same conditions, even after a longer duration of basic solution treatment.展开更多
Understanding the mechanical properties of bionanofilms is important in terms of identifying their durability.The primary focus of this study is to examine the effect of water vapor annealed silk fibroin on the indent...Understanding the mechanical properties of bionanofilms is important in terms of identifying their durability.The primary focus of this study is to examine the effect of water vapor annealed silk fibroin on the indentation modulus and hardness of graphene oxide-silk fibroin(GO-SF)bionanofilms through nanoindentation experiments and finite element analysis(FEA).The GO-SF bionanofilms were fabricated using the layer-by-layer technique.The water vapor annealing process was employed to enhance the interfacial properties between the GO and SF layers,and the mechanical properties of the GO-SF bionanofilms were found to be affected by this process.By employing water vapor annealing,the indentation modulus and hardness of the GO-SF bionanofilms can be improved.Furthermore,the FEA models of the GO-SF bionanofilms were developed to simulate the details of the mechanical behaviors of the GO-SF bionanofilms.The difference in the stress and strain distribution inside the GO-SF bionanofilms before and after annealing was analyzed.In addition,the load-displacement curves that were obtained by the developed FEA model conformed well with the results from the nanoindentation tests.In summary,this study presents the mechanism of improving the indentation modulus and hardness of the GO-SF bionanofilms through the water vapor annealing process,which is established with the FEA simulation models.展开更多
Active sites of two-dimensional(2D)electrocatalysts are often partially blocked owing to their inevitable stacking and hydrophobic polymeric binders in macroscale electrodes,therefore impeding their applications in ef...Active sites of two-dimensional(2D)electrocatalysts are often partially blocked owing to their inevitable stacking and hydrophobic polymeric binders in macroscale electrodes,therefore impeding their applications in efficient electrolyzers.Here,using layered double hydroxide(LDH)nanosheets as a model 2D electrocatalyst,we demonstrate that their performance toward water splitting can be boosted when they are electrostatically assembled into an organized structure pillared by hydrophilic polyelectrolytes or nanoparticles in a layer-by-layer(LbL)fashion.In particular,their mass activity on a planar electrode can be as large as 2.267 mA·μg^(-1) toward oxygen evolution reaction(OER),when NiFe-LDH nanosheets are electrostatically connected by poly(sodium 4-styrenesulfonate)(PSS),while drop-casted NiFe-LDH nanosheets only have a mass activity of 0.116 mA·μg^(-1).In addition,these homogeneous NiFe-LDH nanofilms can be easily deposited on three-dimensional(3D)surfaces with high areas,such as carbon cloths,to serve as practical electrodes with overpotentials of 328 mV at a current density of 100 mA·cm^(-2),and stability for 40 h.Furthermore,Pt nanoparticles can be LbL assembled with NiFe-LDH as bifunctional electrodes for synergistically boosted oxygen and hydrogen evolution reactions(HER),leading to successful overall water splitting powered by a 1.5 V battery.This study heralds the spatial control of 2D nanomaterials in nanoscale precision as an efficient strategy for the design of advanced electrocatalysts.展开更多
Silver halide (AgX) microcrystal was used as template to synthesize hollow polyelectrolyte capsules. These hollow capsules were characterized by laser light scattering (LLS) used to measure the size of the capsules in...Silver halide (AgX) microcrystal was used as template to synthesize hollow polyelectrolyte capsules. These hollow capsules were characterized by laser light scattering (LLS) used to measure the size of the capsules in solution. The ratio of hydrodynamic radius (R h ) from dynamic LLS to the radius of gyration (Rg) from static LLS is almost unity, revealing that the entities are hollow in solution. The results suggest that the LLS method can be regarded as a good complement to the confocal laser scanning microscopy (CLSM) method for the characterization of small hollow capsules, and it possesses the advantage of not needing fluorescence labeling.展开更多
This review focuses on layer by layer (LBL) assembly-based nano ecological sensor (hereafter, eco-sensor) for pesticide detection, which is one of the most versatile methods. The effects of pesticides on human hea...This review focuses on layer by layer (LBL) assembly-based nano ecological sensor (hereafter, eco-sensor) for pesticide detection, which is one of the most versatile methods. The effects of pesticides on human health and on the environment (air, water, soil, plants, and animals) are of great concern due to their increasing use. We highlight two of the most popular detecting methods, i.e., fluorescence and electrochemical detection of pesticides on an LBL assembly. Fluorescence materials are of great interest among researchers for their sensitivity and reliable detection, and electrochemical processes allow us to investigate synergistic interactions among film components through charge transfer mechanisms in LBL film at the molecular level. Then, we noted some prospective directions for development of different types of sensing systems.展开更多
基金the National Natural Science Foundation of China(Grant No.20675064)Natural Science Foundation of Chongqing City(Grant Nos.CSTC-2004BB4149 and 2005BB4100)the High Technology Project Foundation ofSouthwest University(XSGX02),China
文摘Electrochemical sensing of carcinoembryonic antigen(CEA)on a gold electrode modified by the se- quential incorporation of the mediator,thionine(Thi),and gold nanoparticles(nano-Au),through co- valent linkage and electrostatic interactions onto a self-assembled monolayer configuration is de- scribed in this paper.The enzyme,horseradish peroxidase(HRP),was employed to block the possible remaining active sites of the nano-Au monolayer,avoid the non-specific adsorption,instead of bovine serum albumin(BSA),and amplify the response of the antigen-antibody reaction.Electrochemical ex- periments indicated highly efficient electron transfer by the imbedded Thi mediator and adsorbed nano-Au.The HRP kept its activity after immobilization,and the studied electrode showed sensitive response to CEA and high stability during a long period of storage.The working range for the system was 2.5 to 80.0 ng/mL with a detection limit of 0.90 ng/mL.The model membrane system in this work is a potential biosensor for mimicking the other immunosensor and enzyme sensor.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFA0206600)the Science and Technology Innovation Program of Hunan Province(No.2020RC4004)the Special Funding for the Construction of Innovative Provinces in Hunan Province(No.2020GK2024).
文摘Layer-by-layer (LbL) strategy has been developed to form bulk heterojunction (BHJ) structure for processing efficient organic solar cells (OSCs). Herein, LbL slot-die coating with twin boiling point solvents (TBPS) strategy was developed to fabricate highly efficient OSCs, which matches with large-scale, high throughput roll-to-roll (R2R) industrialized mass process. The TBPS strategy could produce high-quality thin film without any additive, leading to the optimized vertical phase separation with interpenetrating nanostructures, as well as the enhanced charge transport and extraction. Thus, the power conversion efficiency up to 14.42% was achieved for [(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo [1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)]:2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4″,5″]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene)) bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (PM6:Y6) OSCs fabricated via sequentially LbL slot-die coating using the TBPS strategy under ambient condition. The research provides a potential route for industrialized production of high-efficiency and large-area OSC devices.
基金Supported by the National Natural Science Foundation of China(Nos.51372125, 51302010) and the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130010120009).
文摘A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. Con- ventional polyelectrolyte multilayers of PAH/PVS are usually fabricated through electrostatic layer-by-layer(LbL) assembly, resulting in poor stability, especially in basic solutions, which leads to the urgent demand for converting weak electrostatic interactions into covalent bonds to enhance the stability of the multilayers. This stability problem has been ultimately addressed by post-infiltrating a photosensitive cross-linking agent, 4,4'-diazostilbene-2,2'- disulfonie acid disodium salt(DAS), into the LbL assembled films to initiate the photochemical reaction to cross-link the multilayers. The obviously improved stability of the photo-cross-linked multilayers was demonstrated through experiments with basic solution treatments. Compared to the complete decomposition of uncross-linked multilayers in basic solution, over 74.4% of the covalently cross-linked multilayers were retained under the same conditions, even after a longer duration of basic solution treatment.
基金This work was supported by the National Research Foundation of Korea(NRF)grant that was funded by the Korea Government(MSIT)(No.NRF-2018R1C1B6002339).
文摘Understanding the mechanical properties of bionanofilms is important in terms of identifying their durability.The primary focus of this study is to examine the effect of water vapor annealed silk fibroin on the indentation modulus and hardness of graphene oxide-silk fibroin(GO-SF)bionanofilms through nanoindentation experiments and finite element analysis(FEA).The GO-SF bionanofilms were fabricated using the layer-by-layer technique.The water vapor annealing process was employed to enhance the interfacial properties between the GO and SF layers,and the mechanical properties of the GO-SF bionanofilms were found to be affected by this process.By employing water vapor annealing,the indentation modulus and hardness of the GO-SF bionanofilms can be improved.Furthermore,the FEA models of the GO-SF bionanofilms were developed to simulate the details of the mechanical behaviors of the GO-SF bionanofilms.The difference in the stress and strain distribution inside the GO-SF bionanofilms before and after annealing was analyzed.In addition,the load-displacement curves that were obtained by the developed FEA model conformed well with the results from the nanoindentation tests.In summary,this study presents the mechanism of improving the indentation modulus and hardness of the GO-SF bionanofilms through the water vapor annealing process,which is established with the FEA simulation models.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52273076,52111540268,and 12004195)the 111 Project(No.B18030)in China+1 种基金The authors also acknowledge the financial support by Haihe Laboratory of Sustainable Chemical Transformations(No.YYJC202101)Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physics(No.KF202113).
文摘Active sites of two-dimensional(2D)electrocatalysts are often partially blocked owing to their inevitable stacking and hydrophobic polymeric binders in macroscale electrodes,therefore impeding their applications in efficient electrolyzers.Here,using layered double hydroxide(LDH)nanosheets as a model 2D electrocatalyst,we demonstrate that their performance toward water splitting can be boosted when they are electrostatically assembled into an organized structure pillared by hydrophilic polyelectrolytes or nanoparticles in a layer-by-layer(LbL)fashion.In particular,their mass activity on a planar electrode can be as large as 2.267 mA·μg^(-1) toward oxygen evolution reaction(OER),when NiFe-LDH nanosheets are electrostatically connected by poly(sodium 4-styrenesulfonate)(PSS),while drop-casted NiFe-LDH nanosheets only have a mass activity of 0.116 mA·μg^(-1).In addition,these homogeneous NiFe-LDH nanofilms can be easily deposited on three-dimensional(3D)surfaces with high areas,such as carbon cloths,to serve as practical electrodes with overpotentials of 328 mV at a current density of 100 mA·cm^(-2),and stability for 40 h.Furthermore,Pt nanoparticles can be LbL assembled with NiFe-LDH as bifunctional electrodes for synergistically boosted oxygen and hydrogen evolution reactions(HER),leading to successful overall water splitting powered by a 1.5 V battery.This study heralds the spatial control of 2D nanomaterials in nanoscale precision as an efficient strategy for the design of advanced electrocatalysts.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 20204017 and 50373049) and theChinese Academy of Sciences (CMS-CX200308).
文摘Silver halide (AgX) microcrystal was used as template to synthesize hollow polyelectrolyte capsules. These hollow capsules were characterized by laser light scattering (LLS) used to measure the size of the capsules in solution. The ratio of hydrodynamic radius (R h ) from dynamic LLS to the radius of gyration (Rg) from static LLS is almost unity, revealing that the entities are hollow in solution. The results suggest that the LLS method can be regarded as a good complement to the confocal laser scanning microscopy (CLSM) method for the characterization of small hollow capsules, and it possesses the advantage of not needing fluorescence labeling.
文摘This review focuses on layer by layer (LBL) assembly-based nano ecological sensor (hereafter, eco-sensor) for pesticide detection, which is one of the most versatile methods. The effects of pesticides on human health and on the environment (air, water, soil, plants, and animals) are of great concern due to their increasing use. We highlight two of the most popular detecting methods, i.e., fluorescence and electrochemical detection of pesticides on an LBL assembly. Fluorescence materials are of great interest among researchers for their sensitivity and reliable detection, and electrochemical processes allow us to investigate synergistic interactions among film components through charge transfer mechanisms in LBL film at the molecular level. Then, we noted some prospective directions for development of different types of sensing systems.