Polystyrene (PS) @SiO2 core-shell microbeads with large pore and large particle size were prepared via layer-by-layer(LBL)assembly technique for potential applications in nano-micro composites. Negative silica nan...Polystyrene (PS) @SiO2 core-shell microbeads with large pore and large particle size were prepared via layer-by-layer(LBL)assembly technique for potential applications in nano-micro composites. Negative silica nanoparticles synthesized via modified St6ber method and cationic poly (diallyldimethylammonium chloride) were alternately adsorbed on the surface of microbeads. Zeta potential, size, and morphology of the microbeads were monitored during LBL assembly process to ensure the successful deposition of silica nanoparticles. The porous shell was characterized using nitrogen adsorption and desorption analyses, and the surface area, volume and diame- ter of the pores were derived. It is found that the porous shell thickness and the pore size can be tuned by changing the coating times of silica nanoparticles. Finally, PS@SiO2 core-shell microbeads with 5 grn PS solid core and 350 nm mesoporous shell (mean BJH pore diameter is ~27 nm) were used to load CdSe/ZnS quantum dots (QDs). The fluorescence microscopic image and the optical amplification of the QDs-embedded microbeads (QDBs) indicate that the as-prepared core-shell microbeads can provide adequate space for QDs and may be useful for further application of nano-micro composites.展开更多
Carbon nanotubes(CNTs)incorporated polymeric composites have been extensively investigated for microwave absorption at target frequencies to meet the requirement of radar cross-section reduction.In this work,a strateg...Carbon nanotubes(CNTs)incorporated polymeric composites have been extensively investigated for microwave absorption at target frequencies to meet the requirement of radar cross-section reduction.In this work,a strategy of efficient utilization of CNT in producing CNT incorporated aramid papers is demonstrated.The layer-by-layer self-assembly technique is used to coat the surfaces of meta-aramid fibers and fibrils with CNT,providing novel raw materials available for the large-scale papermaking.The hierarchical construction of CNT networks resolves the dilemma of increasing CNT content and avoiding the agglomeration of CNT,which is a frequent challenge for CNT incorporated polymeric composites.The composite paper,which contains abundant heterogeneous interfaces and long-range conductive networks,is capable of reaching a high permittivity and dielectric loss tangent at a low CNT loading,its complex permittivity is,so far,adjustable in the range of(1.20−j0.05)to(25.17−j18.89)at 10 GHz.Some papers with optimal matching thicknesses achieve a high-efficiency microwave absorption with a reflection loss lower than−10 dB in the entire X-band.展开更多
Chitosan as an antibacterial agent and heparin as an anti-adhesive agent were alternatively deposited onto aminolyzed poly(ethylene terephthalate)(PET) to construct anti-adhesive and antibacterial multilayer films.The...Chitosan as an antibacterial agent and heparin as an anti-adhesive agent were alternatively deposited onto aminolyzed poly(ethylene terephthalate)(PET) to construct anti-adhesive and antibacterial multilayer films.The contact angle and UV data verified the progressive build-up of the multilayer film by alternate deposition of the polyelectrolytes.PRT experiment and in vitro antibacterial assay indicated that the multilayer-modified PET films had much better hemocompatibility and much stronger antibacterial performance than(unmodified) PET.Such an easy processing and shape-independent method to prepare an anti-adhesive and(antibacterial) surface may have a good potential for surface modification of cardiovascular devices.展开更多
Surface functionalization of magnesium(Mg)alloys is desired to obtain the surfaces with both improved corrosion resistance and antibacterial property.A corrosion-resistant and antimicrobial coating was prepared on Mg ...Surface functionalization of magnesium(Mg)alloys is desired to obtain the surfaces with both improved corrosion resistance and antibacterial property.A corrosion-resistant and antimicrobial coating was prepared on Mg alloy surface by layer-by-layer(LbL)assembly of chitosan(CHI)and poly-L-glutamic acid(PGA)by electrostatic attraction.The functionalized surfaces of the Mg alloys were characterized by field-emission scanning electron microscopy(FE-SEM),Fourier transform infrared(FT-IR)spectroscopy and electrochemical tests.The bactericidal activity of the samples against Staphylococcus aureus was assessed by the zone of plate-counting method.The obtained coating on the Mg alloy substrates exhibits good corrosion resistance and antibacterial performance.展开更多
Using layer-by-layer self-assembly technique,we have successfully constructed nanostructured composite films of conjugated polymer (sulfonic acid ring substituted polyaniline, SPAn)/ semiconductor nanoparticles(Q-CdS)...Using layer-by-layer self-assembly technique,we have successfully constructed nanostructured composite films of conjugated polymer (sulfonic acid ring substituted polyaniline, SPAn)/ semiconductor nanoparticles(Q-CdS).The processes synthesis have been studied by UV-Vis, contact angle measurement, XPS and AFM techniques.The results indicated that the self-assembly processes were dependent on the pH of the solution of each component and the doping time.It has been found that the roughness of the assembled nano-composite films increases as the layer number increases.The main reason can be attributed to the generation of adsorption defects from partially adsorbed film surface in film fabrication processes.展开更多
基金Supported by the National Natural Science Foundation of China(No.51202160)
文摘Polystyrene (PS) @SiO2 core-shell microbeads with large pore and large particle size were prepared via layer-by-layer(LBL)assembly technique for potential applications in nano-micro composites. Negative silica nanoparticles synthesized via modified St6ber method and cationic poly (diallyldimethylammonium chloride) were alternately adsorbed on the surface of microbeads. Zeta potential, size, and morphology of the microbeads were monitored during LBL assembly process to ensure the successful deposition of silica nanoparticles. The porous shell was characterized using nitrogen adsorption and desorption analyses, and the surface area, volume and diame- ter of the pores were derived. It is found that the porous shell thickness and the pore size can be tuned by changing the coating times of silica nanoparticles. Finally, PS@SiO2 core-shell microbeads with 5 grn PS solid core and 350 nm mesoporous shell (mean BJH pore diameter is ~27 nm) were used to load CdSe/ZnS quantum dots (QDs). The fluorescence microscopic image and the optical amplification of the QDs-embedded microbeads (QDBs) indicate that the as-prepared core-shell microbeads can provide adequate space for QDs and may be useful for further application of nano-micro composites.
基金the National Natural Science Foundation of China(No.U21A2093).
文摘Carbon nanotubes(CNTs)incorporated polymeric composites have been extensively investigated for microwave absorption at target frequencies to meet the requirement of radar cross-section reduction.In this work,a strategy of efficient utilization of CNT in producing CNT incorporated aramid papers is demonstrated.The layer-by-layer self-assembly technique is used to coat the surfaces of meta-aramid fibers and fibrils with CNT,providing novel raw materials available for the large-scale papermaking.The hierarchical construction of CNT networks resolves the dilemma of increasing CNT content and avoiding the agglomeration of CNT,which is a frequent challenge for CNT incorporated polymeric composites.The composite paper,which contains abundant heterogeneous interfaces and long-range conductive networks,is capable of reaching a high permittivity and dielectric loss tangent at a low CNT loading,its complex permittivity is,so far,adjustable in the range of(1.20−j0.05)to(25.17−j18.89)at 10 GHz.Some papers with optimal matching thicknesses achieve a high-efficiency microwave absorption with a reflection loss lower than−10 dB in the entire X-band.
文摘Chitosan as an antibacterial agent and heparin as an anti-adhesive agent were alternatively deposited onto aminolyzed poly(ethylene terephthalate)(PET) to construct anti-adhesive and antibacterial multilayer films.The contact angle and UV data verified the progressive build-up of the multilayer film by alternate deposition of the polyelectrolytes.PRT experiment and in vitro antibacterial assay indicated that the multilayer-modified PET films had much better hemocompatibility and much stronger antibacterial performance than(unmodified) PET.Such an easy processing and shape-independent method to prepare an anti-adhesive and(antibacterial) surface may have a good potential for surface modification of cardiovascular devices.
基金Projects(51571134,51601108)supported by the National Natural Science Foundation of ChinaProject(2013RCJJ006)supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,China+1 种基金Project(2016ZRB01A62)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2014TDJH104)supported by Shandong University of Science and Technology Research Fund,China
文摘Surface functionalization of magnesium(Mg)alloys is desired to obtain the surfaces with both improved corrosion resistance and antibacterial property.A corrosion-resistant and antimicrobial coating was prepared on Mg alloy surface by layer-by-layer(LbL)assembly of chitosan(CHI)and poly-L-glutamic acid(PGA)by electrostatic attraction.The functionalized surfaces of the Mg alloys were characterized by field-emission scanning electron microscopy(FE-SEM),Fourier transform infrared(FT-IR)spectroscopy and electrochemical tests.The bactericidal activity of the samples against Staphylococcus aureus was assessed by the zone of plate-counting method.The obtained coating on the Mg alloy substrates exhibits good corrosion resistance and antibacterial performance.
文摘Using layer-by-layer self-assembly technique,we have successfully constructed nanostructured composite films of conjugated polymer (sulfonic acid ring substituted polyaniline, SPAn)/ semiconductor nanoparticles(Q-CdS).The processes synthesis have been studied by UV-Vis, contact angle measurement, XPS and AFM techniques.The results indicated that the self-assembly processes were dependent on the pH of the solution of each component and the doping time.It has been found that the roughness of the assembled nano-composite films increases as the layer number increases.The main reason can be attributed to the generation of adsorption defects from partially adsorbed film surface in film fabrication processes.