In this paper, we discuss the moving-average process Xk = ∑i=-∞ ^∞ ai+kεi, where {εi;-∞ 〈 i 〈 ∞} is a doubly infinite sequence of identically distributed ψ-mixing or negatively associated random variables w...In this paper, we discuss the moving-average process Xk = ∑i=-∞ ^∞ ai+kεi, where {εi;-∞ 〈 i 〈 ∞} is a doubly infinite sequence of identically distributed ψ-mixing or negatively associated random variables with mean zeros and finite variances, {ai;-∞ 〈 i 〈 -∞) is an absolutely solutely summable sequence of real numbers.展开更多
The present paper first shows that, without any dependent structure assumptions for a sequence of random variables, the refined results of the complete convergence for the sequence is equivalent to the corresponding c...The present paper first shows that, without any dependent structure assumptions for a sequence of random variables, the refined results of the complete convergence for the sequence is equivalent to the corresponding complete moment convergence of the sequence. Then this paper investigates the convergence rates and refined convergence rates (or complete moment convergence) for probabilities of moderate deviations of moving average processes. The results in this paper extend and generalize some well-known results.展开更多
Let {X, X_n; n≥1} be i.i.d.r.v.'s taking values in a separable Banach space (B,||·||)such that EX=0 and Ef^2(X)<+∞, ?∈6B~*, and S_n=X_1+…+X_n for n≥1. The purposeof this paper is to study the rates of...Let {X, X_n; n≥1} be i.i.d.r.v.'s taking values in a separable Banach space (B,||·||)such that EX=0 and Ef^2(X)<+∞, ?∈6B~*, and S_n=X_1+…+X_n for n≥1. The purposeof this paper is to study the rates of convergence to zero of P(inf||Sn/(2nloglogn)^(1/2)-x||≥ε) and P(sup inf||S_k/(2kloglogk)^(1/2)-x||≥ε) (?ε>0) under precisely necessary and sufficientconditions. We also give new necessary and sufficient conditions for X to satisfy the boundand compact law of the iterated logarithm, respectively. Our results improve some resultsof Darling and Robbins (1967) as well as Davis (1968) even in the case B=R.展开更多
Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for ...Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for any a〉-1 and b〉 -1,lim ε↑1/√1+a(1/√1+a-ε)b+1 ∑n=1^∞(logn)^a(loglogn)^b/nP{max κ≤n|Sκ|≤√σ^2π^2n/8loglogn(ε+an)}=4/π(1/2(1+a)^3/2)^b+1 Г(b+1),whenever an = o(1/log log n). The author obtains the sufficient and necessary conditions for this kind of results to hold.展开更多
Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t...Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t≤1B(t)-inf0≤t≤sB(t),and B(t) is a Brownian bridge.展开更多
Let θ∈^d be a unit vector and let X, X1, X2,…… be a sequence of i.i.d. Xd-valued random vectors attracted to operator semi-stable laws. For each integer n ≥1, let X1,≤……≤ Xn,n denote the order statistics of X...Let θ∈^d be a unit vector and let X, X1, X2,…… be a sequence of i.i.d. Xd-valued random vectors attracted to operator semi-stable laws. For each integer n ≥1, let X1,≤……≤ Xn,n denote the order statistics of X1, X2,..., Xn according to priority of index, namely |(X1,nθ)|≥…≥ [(Xn,n,θ)1, where (., .) is an inner product on Rd. For all integers r ≥ 0, define by (r)Sn =∑n-r i=1Xi,n the trimmed sum. In this paper we investigate a law of the iterated logarithm and limit distributions for trimmed sums (r)Sn. Our results give information about the maximal growth rate of sample paths for partial sums of X when r extreme terms are excluded. A stochastically compactness of (r)Sn is obtained.展开更多
Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependen...Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependent random variables. Under the conditions of {αk, k ≥ 0} which entail that {Xt, t ≥ 1} is either a long memory process or a linear process, the strong approximation of {Xt, t ≥ 1} to a Gaussian process is studied. Finally, the results are applied to obtain the strong approximation of a long memory process to a fractional Brownian motion and the laws of the iterated logarithm for moving average processes.展开更多
A continuous time random walk is a random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper, we establish a Chung-type law of the iterated logarithm for continuous time...A continuous time random walk is a random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper, we establish a Chung-type law of the iterated logarithm for continuous time random walk with jumps and waiting times in the domains of attraction of stable laws.展开更多
Negatively associated sequences have been studied extensively in recent years, Asymptotically negative association is a generalization of negative association, In this paper a Berry Esseen theorem and a law of the ite...Negatively associated sequences have been studied extensively in recent years, Asymptotically negative association is a generalization of negative association, In this paper a Berry Esseen theorem and a law of the iterated logarithm are obtained for asymptotically negatively associated sequences.展开更多
Consider a ρ-mixing sequence of identically distributed random variables with the underlying dis- tribution in the domain of attraction of the normal distribution. This paper proves that law of the iterated logarithm...Consider a ρ-mixing sequence of identically distributed random variables with the underlying dis- tribution in the domain of attraction of the normal distribution. This paper proves that law of the iterated logarithm holds for ρ-mixing sequences of random variables. Our results generalize and improve Theorems 1.2-1.3 of Qi and Cheng (1996) from the i.i.d, case to ρ-mixing sequences.展开更多
In this paper, we give a detailed description of the local behavior of theLipschitz-1/2 modulus for cumulative hazard process and PL-process when the data are subject to lefttruncation and right censored observations....In this paper, we give a detailed description of the local behavior of theLipschitz-1/2 modulus for cumulative hazard process and PL-process when the data are subject to lefttruncation and right censored observations. We establish laws of the iterated logarithm of theLipschitz-1/2 modulus of PL-process and cumulative hazard process. These results for the PL-processare sharper than other results found in the literature, which can be used to establish theasymptotic properties of many statistics.展开更多
Let {ξ<SUB> j </SUB>; j ∈ ℤ<SUB>+</SUB><SUP> d </SUP>be a centered stationary Gaussian random field, where ℤ<SUB>+</SUB><SUP>...Let {ξ<SUB> j </SUB>; j ∈ ℤ<SUB>+</SUB><SUP> d </SUP>be a centered stationary Gaussian random field, where ℤ<SUB>+</SUB><SUP> d </SUP>is the d-dimensional lattice of all points in d-dimensional Euclidean space ℝ<SUP>d</SUP>, having nonnegative integer coordinates. For each j = (j <SUB>1 </SUB>, ..., jd) in ℤ<SUB>+</SUB><SUP> d </SUP>, we denote |j| = j <SUB>1 </SUB>... j <SUB>d </SUB>and for m, n ∈ ℤ<SUB>+</SUB><SUP> d </SUP>, define S(m, n] = Σ<SUB> m【j≤n </SUB>ζ<SUB> j </SUB>, σ<SUP>2</SUP>(|n−m|) = ES <SUP>2 </SUP>(m, n], S <SUB>n </SUB>= S(0, n] and S <SUB>0 </SUB>= 0. Assume that σ(|n|) can be extended to a continuous function σ(t) of t 】 0, which is nondecreasing and regularly varying with exponent α at b ≥ 0 for some 0 【 α 【 1. Under some additional conditions, we study limsup results for increments of partial sum processes and prove as well the law of the iterated logarithm for such partial sum processes.展开更多
基金Research supported by National Natural Science Foundation of China
文摘In this paper, we discuss the moving-average process Xk = ∑i=-∞ ^∞ ai+kεi, where {εi;-∞ 〈 i 〈 ∞} is a doubly infinite sequence of identically distributed ψ-mixing or negatively associated random variables with mean zeros and finite variances, {ai;-∞ 〈 i 〈 -∞) is an absolutely solutely summable sequence of real numbers.
基金National Natural Science Foundation of China (Grant No.60574002)MASCOS grant from Australian Research CouncilNational Natural Science Foundation of China (Grant No.70671018)
文摘The present paper first shows that, without any dependent structure assumptions for a sequence of random variables, the refined results of the complete convergence for the sequence is equivalent to the corresponding complete moment convergence of the sequence. Then this paper investigates the convergence rates and refined convergence rates (or complete moment convergence) for probabilities of moderate deviations of moving average processes. The results in this paper extend and generalize some well-known results.
基金Project supported by the National Natural Science Foundation of China.
文摘Let {X, X_n; n≥1} be i.i.d.r.v.'s taking values in a separable Banach space (B,||·||)such that EX=0 and Ef^2(X)<+∞, ?∈6B~*, and S_n=X_1+…+X_n for n≥1. The purposeof this paper is to study the rates of convergence to zero of P(inf||Sn/(2nloglogn)^(1/2)-x||≥ε) and P(sup inf||S_k/(2kloglogk)^(1/2)-x||≥ε) (?ε>0) under precisely necessary and sufficientconditions. We also give new necessary and sufficient conditions for X to satisfy the boundand compact law of the iterated logarithm, respectively. Our results improve some resultsof Darling and Robbins (1967) as well as Davis (1968) even in the case B=R.
基金National Natural Science Foundation of China (No.10471126)
文摘Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for any a〉-1 and b〉 -1,lim ε↑1/√1+a(1/√1+a-ε)b+1 ∑n=1^∞(logn)^a(loglogn)^b/nP{max κ≤n|Sκ|≤√σ^2π^2n/8loglogn(ε+an)}=4/π(1/2(1+a)^3/2)^b+1 Г(b+1),whenever an = o(1/log log n). The author obtains the sufficient and necessary conditions for this kind of results to hold.
文摘Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t≤1B(t)-inf0≤t≤sB(t),and B(t) is a Brownian bridge.
基金Supported by National Natural Science Foundation of China(Grant No.11071076)NSF of Zhejiang Province(Grant No.LY14A010025)
文摘Let θ∈^d be a unit vector and let X, X1, X2,…… be a sequence of i.i.d. Xd-valued random vectors attracted to operator semi-stable laws. For each integer n ≥1, let X1,≤……≤ Xn,n denote the order statistics of X1, X2,..., Xn according to priority of index, namely |(X1,nθ)|≥…≥ [(Xn,n,θ)1, where (., .) is an inner product on Rd. For all integers r ≥ 0, define by (r)Sn =∑n-r i=1Xi,n the trimmed sum. In this paper we investigate a law of the iterated logarithm and limit distributions for trimmed sums (r)Sn. Our results give information about the maximal growth rate of sample paths for partial sums of X when r extreme terms are excluded. A stochastically compactness of (r)Sn is obtained.
文摘Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependent random variables. Under the conditions of {αk, k ≥ 0} which entail that {Xt, t ≥ 1} is either a long memory process or a linear process, the strong approximation of {Xt, t ≥ 1} to a Gaussian process is studied. Finally, the results are applied to obtain the strong approximation of a long memory process to a fractional Brownian motion and the laws of the iterated logarithm for moving average processes.
基金Supported by the National Natural Science Foundation of China (10871200)
文摘In this article, we obtain the central limit theorem and the law of the iterated logarithm for Galton-Watson processes in i.i.d, random environments.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11671115 the Natural Science Foundation of Zhejiang Province under Grant No.LY14A010025
文摘A continuous time random walk is a random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper, we establish a Chung-type law of the iterated logarithm for continuous time random walk with jumps and waiting times in the domains of attraction of stable laws.
基金National Natural Science Foundation of China(No.10471126)
文摘Negatively associated sequences have been studied extensively in recent years, Asymptotically negative association is a generalization of negative association, In this paper a Berry Esseen theorem and a law of the iterated logarithm are obtained for asymptotically negatively associated sequences.
基金supported by the National Natural Science Foundation of China(11361019)the Support Program of the Guangxi China Science Foundation(2015GXNSFAA139008)
文摘Consider a ρ-mixing sequence of identically distributed random variables with the underlying dis- tribution in the domain of attraction of the normal distribution. This paper proves that law of the iterated logarithm holds for ρ-mixing sequences of random variables. Our results generalize and improve Theorems 1.2-1.3 of Qi and Cheng (1996) from the i.i.d, case to ρ-mixing sequences.
文摘In this paper, we give a detailed description of the local behavior of theLipschitz-1/2 modulus for cumulative hazard process and PL-process when the data are subject to lefttruncation and right censored observations. We establish laws of the iterated logarithm of theLipschitz-1/2 modulus of PL-process and cumulative hazard process. These results for the PL-processare sharper than other results found in the literature, which can be used to establish theasymptotic properties of many statistics.
基金NSERC Canada grants of Miklos Csorgo and Barbara Szyszkowicz at Carleton University,Ottawa,and by KRF-2003-C00098NSERC Canada grants at Carleton University,Ottawa
文摘Let {ξ<SUB> j </SUB>; j ∈ ℤ<SUB>+</SUB><SUP> d </SUP>be a centered stationary Gaussian random field, where ℤ<SUB>+</SUB><SUP> d </SUP>is the d-dimensional lattice of all points in d-dimensional Euclidean space ℝ<SUP>d</SUP>, having nonnegative integer coordinates. For each j = (j <SUB>1 </SUB>, ..., jd) in ℤ<SUB>+</SUB><SUP> d </SUP>, we denote |j| = j <SUB>1 </SUB>... j <SUB>d </SUB>and for m, n ∈ ℤ<SUB>+</SUB><SUP> d </SUP>, define S(m, n] = Σ<SUB> m【j≤n </SUB>ζ<SUB> j </SUB>, σ<SUP>2</SUP>(|n−m|) = ES <SUP>2 </SUP>(m, n], S <SUB>n </SUB>= S(0, n] and S <SUB>0 </SUB>= 0. Assume that σ(|n|) can be extended to a continuous function σ(t) of t 】 0, which is nondecreasing and regularly varying with exponent α at b ≥ 0 for some 0 【 α 【 1. Under some additional conditions, we study limsup results for increments of partial sum processes and prove as well the law of the iterated logarithm for such partial sum processes.