Based on dynamic rupture simulations on a planar fault in a homogeneous half-space, we investigated the nucleation processes using the time-weakening friction law. Both the characteristic time and the rupture speed in...Based on dynamic rupture simulations on a planar fault in a homogeneous half-space, we investigated the nucleation processes using the time-weakening friction law. Both the characteristic time and the rupture speed in the nucleation asperity play an important role in determining rupture behaviors on a fault plane following the time-weakening friction law, with which rupture starts from a single point in the nucleation asperity and propagates at a given speed toward the boundary of the nucleation area. Rupture with a small characteristic time or a large rupture speed in the nucleation asperity propagates earlier from the hypocenter. Rupture following the slipweakening friction law requires a smaller radius of nucleation patch to have similar rupture front contours of the time-weakening friction law. Even if the rupture velocity in the nucleation patch of the time-weakening friction law increases to infinity, the peak slip rate in the nucleation asperity is smaller than that of the slip-weakening law. The peak ground velocity distributions of ruptures following the two friction laws are also compared.展开更多
In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the...In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the forces of reaction on a fixed (i.e. inextensible) ladder. This problem is statically indeterminate since there are 4 forces of reaction and only 3 equations of static equilibrium. The model that predicted the empirical reactions correctly used a law of static friction to complement the equations of static equilibrium. The present paper examines in greater theoretical and experimental detail the role of friction in accounting for the forces of reaction on a fixed ladder. The reported measurements confirm that forces parallel and normal to the support at the top of the ladder are linearly proportional with a constant coefficient of friction irrespective of the magnitude or location of the load, as assumed in the theoretical model. However, measurements of forces parallel and normal to the support at the base of the ladder are linearly proportional with coefficients that depend sensitively on the location (although not the magnitude) of the load. This paper accounts quantitatively for the different effects of friction at the top and base of the ladder under conditions of usual use whereby friction at the vertical support alone is insufficient to keep the ladder from sliding. A theoretical model is also proposed for the unusual circumstance in which friction at the vertical support can keep the ladder from sliding.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41504039, 41474037 and 41274053)
文摘Based on dynamic rupture simulations on a planar fault in a homogeneous half-space, we investigated the nucleation processes using the time-weakening friction law. Both the characteristic time and the rupture speed in the nucleation asperity play an important role in determining rupture behaviors on a fault plane following the time-weakening friction law, with which rupture starts from a single point in the nucleation asperity and propagates at a given speed toward the boundary of the nucleation area. Rupture with a small characteristic time or a large rupture speed in the nucleation asperity propagates earlier from the hypocenter. Rupture following the slipweakening friction law requires a smaller radius of nucleation patch to have similar rupture front contours of the time-weakening friction law. Even if the rupture velocity in the nucleation patch of the time-weakening friction law increases to infinity, the peak slip rate in the nucleation asperity is smaller than that of the slip-weakening law. The peak ground velocity distributions of ruptures following the two friction laws are also compared.
文摘In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the forces of reaction on a fixed (i.e. inextensible) ladder. This problem is statically indeterminate since there are 4 forces of reaction and only 3 equations of static equilibrium. The model that predicted the empirical reactions correctly used a law of static friction to complement the equations of static equilibrium. The present paper examines in greater theoretical and experimental detail the role of friction in accounting for the forces of reaction on a fixed ladder. The reported measurements confirm that forces parallel and normal to the support at the top of the ladder are linearly proportional with a constant coefficient of friction irrespective of the magnitude or location of the load, as assumed in the theoretical model. However, measurements of forces parallel and normal to the support at the base of the ladder are linearly proportional with coefficients that depend sensitively on the location (although not the magnitude) of the load. This paper accounts quantitatively for the different effects of friction at the top and base of the ladder under conditions of usual use whereby friction at the vertical support alone is insufficient to keep the ladder from sliding. A theoretical model is also proposed for the unusual circumstance in which friction at the vertical support can keep the ladder from sliding.