As an army main battle equipment, it is required that the tank should have high firing accuracy and high first round hit probability during marching. The initial disturbance of the projectile is the premier factor tha...As an army main battle equipment, it is required that the tank should have high firing accuracy and high first round hit probability during marching. The initial disturbance of the projectile is the premier factor that takes effect on the marching fire accuracy of the tank. And the marching fire accuracy of the tank depends on the launch dynamics behaviors of the tank. In this paper, the launch dynamics theory of a tank marching fire is studied, and its launch dynamics model is established. Based on the transfer matrix method for multibody system(MSTMM) and the automatic deduction theorem of overall transfer equations, the overall transfer equation and the overall transfer matrix of a tank multibody system are deduced; the launch dynamics equations of the tank marching fire are deduced, and the dynamic response of the tank system, the motion of projectile in barrel, the initial disturbance of the projectile and the vertical target dispersion are exactly simulated; meanwhile, the results of simulation are verified by tests. This work provides both theoretical foundation and simulation approaches for improving the marching fire accuracy of the tank.展开更多
In this paper, the attitude tracking and load relief control problems against wind disturbances and uncertain aerodynamics as well as the engine thrust of launch vehicles are studied.Firstly, a framework of Compensate...In this paper, the attitude tracking and load relief control problems against wind disturbances and uncertain aerodynamics as well as the engine thrust of launch vehicles are studied.Firstly, a framework of Compensated Acceleration Feedback based Active Disturbance Rejection Control(CAF-ADRC) is established to achieve both desired attitude tracking and load relief performances. In particular, the total disturbance that includes the effects caused by both aerocoefficient perturbations and disturbances is estimated by constructing an Extended State Observer(ESO) to achieve attitude tracking. Furthermore, combined with the normal acceleration due to the engine thrust, the accelerometer measurement is also compensated to enhance the load relief effect.Secondly, the quantitative analysis of ESO and the entire closed-loop system are studied. It can be concluded that the desired attitude tracking and load relief performances can be achieved simultaneously under the proposed approach. Besides, tuning laws of the proposed approach are systematically given, which are divided into ESO, Proportional Derivative(PD) and Compensated Acceleration Feedback(CAF) modules. Moreover, the performances under CAF-ADRC approach can be better than those under CAF based PD(CAF-PD) approach by tuning load relief gain.Finally, the approach presented is applied to a typical control problem of launch vehicles with wind disturbances and parameter uncertainties.展开更多
基金the National Natural Science Foundation of China(No.61304137)the Equipment Preresearch Mutual Application Techniques Foundation of China(No.9140A10041013BQ02143)
文摘As an army main battle equipment, it is required that the tank should have high firing accuracy and high first round hit probability during marching. The initial disturbance of the projectile is the premier factor that takes effect on the marching fire accuracy of the tank. And the marching fire accuracy of the tank depends on the launch dynamics behaviors of the tank. In this paper, the launch dynamics theory of a tank marching fire is studied, and its launch dynamics model is established. Based on the transfer matrix method for multibody system(MSTMM) and the automatic deduction theorem of overall transfer equations, the overall transfer equation and the overall transfer matrix of a tank multibody system are deduced; the launch dynamics equations of the tank marching fire are deduced, and the dynamic response of the tank system, the motion of projectile in barrel, the initial disturbance of the projectile and the vertical target dispersion are exactly simulated; meanwhile, the results of simulation are verified by tests. This work provides both theoretical foundation and simulation approaches for improving the marching fire accuracy of the tank.
基金supported by the National Key R&D Program of China (No. 2022YFA1004703)the National Natural Science Foundation of China (Nos. 62122083 and 62103014)Chinese Academy of Sciences Youth Innovation Promotion Association (No. 2021003)。
文摘In this paper, the attitude tracking and load relief control problems against wind disturbances and uncertain aerodynamics as well as the engine thrust of launch vehicles are studied.Firstly, a framework of Compensated Acceleration Feedback based Active Disturbance Rejection Control(CAF-ADRC) is established to achieve both desired attitude tracking and load relief performances. In particular, the total disturbance that includes the effects caused by both aerocoefficient perturbations and disturbances is estimated by constructing an Extended State Observer(ESO) to achieve attitude tracking. Furthermore, combined with the normal acceleration due to the engine thrust, the accelerometer measurement is also compensated to enhance the load relief effect.Secondly, the quantitative analysis of ESO and the entire closed-loop system are studied. It can be concluded that the desired attitude tracking and load relief performances can be achieved simultaneously under the proposed approach. Besides, tuning laws of the proposed approach are systematically given, which are divided into ESO, Proportional Derivative(PD) and Compensated Acceleration Feedback(CAF) modules. Moreover, the performances under CAF-ADRC approach can be better than those under CAF based PD(CAF-PD) approach by tuning load relief gain.Finally, the approach presented is applied to a typical control problem of launch vehicles with wind disturbances and parameter uncertainties.