The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model g...The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model gives rise to energy bands, similar to those in semiconductor solid-state models. In this context, valence band holes are described as dark matter particles with a heavy effective mass. The conducting band, with a spontaneously symmetry-breaking energy profile, contains particles with several times lighter effective mass, which can represent luminous matter. Some possible analogies with solid-state physics, such as the comparison between dark and luminous matter, are discussed. Additionally, tiny dark energy, as intrinsic lattice Casimir energy, is calculated for a lattice with a large number of lattice nodes.展开更多
In the classical Peierls-Nabarro (P-N) theory of dislocation, there is a long-standing contradiction that the stable configuration of dislocation has maximum energy rather than minimum energy. In this paper, the dis...In the classical Peierls-Nabarro (P-N) theory of dislocation, there is a long-standing contradiction that the stable configuration of dislocation has maximum energy rather than minimum energy. In this paper, the dislocation energy is calculated rigorously in the context of the full lattice theory. It is found that besides the misfit energy considered in the classical P-N theory, there is an extra elastic strain energy that is also associated with the discreteness of lattice. The contradiction can be automatically removed provided that the elastic strain energy associated with the discreteness is taken into account. This elastic strain energy is very important because its magnitude is larger than the misfit energy, its sign is opposite to the misfit energy. Since the elastic strain energy and misfit energy associated with discreteness cancel each other, and the width of dislocation becomes wide in the lattice theory, the Peierls energy, which measures the height of the effective potential barrier, becomes much smaller than that given in the classical P-N theory. The results calculated here agree with experimental data. Furthermore, based on the results obtained, a useful formula of the Peierls stress is proposed to fully include the discreteness effects.展开更多
The electronic structures of pure V, Nb and Ta metals with bcc structure were determined by one atom (OA) theory. According to the electronic structures of these metals, their potential curves, cohesive energies, latt...The electronic structures of pure V, Nb and Ta metals with bcc structure were determined by one atom (OA) theory. According to the electronic structures of these metals, their potential curves, cohesive energies, lattice parameters, elasticity and the dependence of linear thermal expansion coefficients on temperature were calculated. The electronic structures and characteristic properties of these metals with fcc and hcp structures and liquid states were studied.展开更多
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
文摘The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model gives rise to energy bands, similar to those in semiconductor solid-state models. In this context, valence band holes are described as dark matter particles with a heavy effective mass. The conducting band, with a spontaneously symmetry-breaking energy profile, contains particles with several times lighter effective mass, which can represent luminous matter. Some possible analogies with solid-state physics, such as the comparison between dark and luminous matter, are discussed. Additionally, tiny dark energy, as intrinsic lattice Casimir energy, is calculated for a lattice with a large number of lattice nodes.
基金Project supported by the National Natural Science Foundation of China (Grant No 10274057).
文摘In the classical Peierls-Nabarro (P-N) theory of dislocation, there is a long-standing contradiction that the stable configuration of dislocation has maximum energy rather than minimum energy. In this paper, the dislocation energy is calculated rigorously in the context of the full lattice theory. It is found that besides the misfit energy considered in the classical P-N theory, there is an extra elastic strain energy that is also associated with the discreteness of lattice. The contradiction can be automatically removed provided that the elastic strain energy associated with the discreteness is taken into account. This elastic strain energy is very important because its magnitude is larger than the misfit energy, its sign is opposite to the misfit energy. Since the elastic strain energy and misfit energy associated with discreteness cancel each other, and the width of dislocation becomes wide in the lattice theory, the Peierls energy, which measures the height of the effective potential barrier, becomes much smaller than that given in the classical P-N theory. The results calculated here agree with experimental data. Furthermore, based on the results obtained, a useful formula of the Peierls stress is proposed to fully include the discreteness effects.
文摘The electronic structures of pure V, Nb and Ta metals with bcc structure were determined by one atom (OA) theory. According to the electronic structures of these metals, their potential curves, cohesive energies, lattice parameters, elasticity and the dependence of linear thermal expansion coefficients on temperature were calculated. The electronic structures and characteristic properties of these metals with fcc and hcp structures and liquid states were studied.
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.