In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear pe...In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization(MOPSO) and multi-objective genetic algorithm(MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima.展开更多
This paper presents the design of a compact proton synchrotron, including lattice structure, injection system and extraction system, for radiation applications. The lattice is based on a DBFO cell and shows good prope...This paper presents the design of a compact proton synchrotron, including lattice structure, injection system and extraction system, for radiation applications. The lattice is based on a DBFO cell and shows good properties like small β_(max) and decent kick arm. Radiation applications require relative strong and continuous beam,so we propose strip injection and resonance extraction for the design. A phase space painting scheme is designed and simulated by ORBIT. The scheme achieves good uniformity in phase space. The extraction system is designed and optimized by multi-particle tracking.展开更多
The Super Heavy Experimental Ring (SHER), which is one of the rings of the next accelerator complex High Intensity Heavy Ion Accelerator Facility (HIAF) at IMP, has to be optimized for e-cooling. Its lattice is de...The Super Heavy Experimental Ring (SHER), which is one of the rings of the next accelerator complex High Intensity Heavy Ion Accelerator Facility (HIAF) at IMP, has to be optimized for e-cooling. Its lattice is designed for two modes: the first is the isochronous mode, which is a time-of-flight mass spectrometer for short-lived secondary nuclei, the second is the storage ring mode, which is used for collecting and cooling the secondary rare isotope beams from the transport line. In order to fulfil its purpose, the ion optics can be set to different ion optical modes.展开更多
The emittance growth induced by Coherent Synchrotron Radiation (CSR) is an important issue when electron bunches with short bunch length and high peak current are transported in a bending magnet. In this paper, a si...The emittance growth induced by Coherent Synchrotron Radiation (CSR) is an important issue when electron bunches with short bunch length and high peak current are transported in a bending magnet. In this paper, a single kick method is introduced that could give the same result as the R-matrix method, but is much easier to use. Then, with this method, an optics design technique is introduced that could minimize the emittance dilution within a single achromatic cell.展开更多
The Compact Linear Collider (CLIC) is a future e+e linear collider. The CLIC study concentrated on a design of center-of-mass energy of 3 TeV and demonstrated the feasibility of the technology. However, the physics...The Compact Linear Collider (CLIC) is a future e+e linear collider. The CLIC study concentrated on a design of center-of-mass energy of 3 TeV and demonstrated the feasibility of the technology. However, the physics also demands lower energy collision. To satisfy this, CLIC can be built in stages. The actual stages will depend on LHC results. Some specific scenarios of staged constructions have been shown in CLIC Concept Design Report (CDR). In this paper, we concentrate on the main linac lattice design for Ecm=l TeV CLIC aiming to upgrade from E~.,=500 GeV CLIC and then to Ecru=3 TeV one. This main linac accelerates the electron or positron beam froth 9 GeV to 500 GeV. A primary lattice design based on the 3 TeV CLIC main linac design and its optimization based on the beam dynamics study will be presented. As we use the same design principles as 3TeV CLIC main linac, this optimization is basically identical to the 3 TeV one. All the simulations results are obtained using the tracking code PLACET.展开更多
We try to design the lattice with 2 super periods and 4-DBA structure in order to provide more drifts for the future development of the TTX source. Due to the space limitation in the lab, the 4-DBA lattice is suitable...We try to design the lattice with 2 super periods and 4-DBA structure in order to provide more drifts for the future development of the TTX source. Due to the space limitation in the lab, the 4-DBA lattice is suitable.In the paper,we present the lattice design with a 4-DBA structure mainly for the pulse mode of the compact laser-electron storage ring (LESR). Element parameters of the lattice are optimized with the help of the professional software and beam dynamics such as intra-beam scattering (IBS) and Compton scattering (CS) are calculated. Besides, the fringe field effect is analyzed with the numerical method.展开更多
In the near future,the Phase-Ⅱ beamline project of Shanghai Synchrotron Radiation Facility(SSRF)will be implemented and some dipoles in the storage ring will be replaced by high field dipoles(super-bend),so as to lea...In the near future,the Phase-Ⅱ beamline project of Shanghai Synchrotron Radiation Facility(SSRF)will be implemented and some dipoles in the storage ring will be replaced by high field dipoles(super-bend),so as to leave room for short straight sections.In this way,the brightness of the hard x-ray emitted from the super-bends can be enhanced,and more insertion devices can be installed.In this paper,super-bends of two lengths are discussed and the corresponding lattices are presented.展开更多
基金Supported by NSFC(11475202,11405187)Youth Innovation Promotion Association CAS(2015009)
文摘In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization(MOPSO) and multi-objective genetic algorithm(MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima.
文摘This paper presents the design of a compact proton synchrotron, including lattice structure, injection system and extraction system, for radiation applications. The lattice is based on a DBFO cell and shows good properties like small β_(max) and decent kick arm. Radiation applications require relative strong and continuous beam,so we propose strip injection and resonance extraction for the design. A phase space painting scheme is designed and simulated by ORBIT. The scheme achieves good uniformity in phase space. The extraction system is designed and optimized by multi-particle tracking.
文摘The Super Heavy Experimental Ring (SHER), which is one of the rings of the next accelerator complex High Intensity Heavy Ion Accelerator Facility (HIAF) at IMP, has to be optimized for e-cooling. Its lattice is designed for two modes: the first is the isochronous mode, which is a time-of-flight mass spectrometer for short-lived secondary nuclei, the second is the storage ring mode, which is used for collecting and cooling the secondary rare isotope beams from the transport line. In order to fulfil its purpose, the ion optics can be set to different ion optical modes.
文摘The emittance growth induced by Coherent Synchrotron Radiation (CSR) is an important issue when electron bunches with short bunch length and high peak current are transported in a bending magnet. In this paper, a single kick method is introduced that could give the same result as the R-matrix method, but is much easier to use. Then, with this method, an optics design technique is introduced that could minimize the emittance dilution within a single achromatic cell.
基金Supported by National Natural Science Foundation of China(11175192)
文摘The Compact Linear Collider (CLIC) is a future e+e linear collider. The CLIC study concentrated on a design of center-of-mass energy of 3 TeV and demonstrated the feasibility of the technology. However, the physics also demands lower energy collision. To satisfy this, CLIC can be built in stages. The actual stages will depend on LHC results. Some specific scenarios of staged constructions have been shown in CLIC Concept Design Report (CDR). In this paper, we concentrate on the main linac lattice design for Ecm=l TeV CLIC aiming to upgrade from E~.,=500 GeV CLIC and then to Ecru=3 TeV one. This main linac accelerates the electron or positron beam froth 9 GeV to 500 GeV. A primary lattice design based on the 3 TeV CLIC main linac design and its optimization based on the beam dynamics study will be presented. As we use the same design principles as 3TeV CLIC main linac, this optimization is basically identical to the 3 TeV one. All the simulations results are obtained using the tracking code PLACET.
基金Supported by National Natural Science Foundation of China (10735050)National Basic Research Program of China (973 Program)(2007CB815102)
文摘We try to design the lattice with 2 super periods and 4-DBA structure in order to provide more drifts for the future development of the TTX source. Due to the space limitation in the lab, the 4-DBA lattice is suitable.In the paper,we present the lattice design with a 4-DBA structure mainly for the pulse mode of the compact laser-electron storage ring (LESR). Element parameters of the lattice are optimized with the help of the professional software and beam dynamics such as intra-beam scattering (IBS) and Compton scattering (CS) are calculated. Besides, the fringe field effect is analyzed with the numerical method.
文摘In the near future,the Phase-Ⅱ beamline project of Shanghai Synchrotron Radiation Facility(SSRF)will be implemented and some dipoles in the storage ring will be replaced by high field dipoles(super-bend),so as to leave room for short straight sections.In this way,the brightness of the hard x-ray emitted from the super-bends can be enhanced,and more insertion devices can be installed.In this paper,super-bends of two lengths are discussed and the corresponding lattices are presented.