This research paper aims to identify the effect of tire size on the handling characteristics of a trailer attached to a vehicle. In various stability tests, different models with different tires from the market were t...This research paper aims to identify the effect of tire size on the handling characteristics of a trailer attached to a vehicle. In various stability tests, different models with different tires from the market were tested. A successful outcome of this research would generate an efficient tire selection process and improve the handling of a trailer attached to a vehicle while maximizing fuel efficiency. In this study, different accurate tire models using the magic formula were developed in vehicle dynamics modelling and simulation software. These models were then simulated on on-road conditions to predict vehicle and trailer behaviour under different conditions within the software. Two distinct tests were conducted, the J-Turn test and the Double Lane change test. The results of these tests were used to evaluate the handling characteristics and decide on a better tire size for the trailer attached to the vehicle.展开更多
We present capillary grip-induced stick-slip motion,a nanoscale tribological effect,where the role of a nanoscale confined water meniscus formed between a buckled sharp tip and a glass or mica surface is addressed by ...We present capillary grip-induced stick-slip motion,a nanoscale tribological effect,where the role of a nanoscale confined water meniscus formed between a buckled sharp tip and a glass or mica surface is addressed by shear dynamic force measurement.We obtained the effective elasticity,viscosity,conservative(elastic)and non-conservative(viscous)forces,energy dissipation,and lateral force using small oscillation,amplitude-modulation,and shear-mode quartz tuning fork-atomic force microscopy(QTFAFM).We distinguished the conservative and non-conservative forces by investigating the dependence of normal load and relative humidity,slip length,and stick-slip frequency.We found that the confined nanoscale water enhances the lateral forces via capillary grip-induced stick-slip on a rough surface,resulting in an increase of static lateral force(3-fold for both substrates)and kinetic lateral force(6-fold for glass,3-fold for mica).This work provides quantitative and systematic understanding of nanoscale tribology properties in humid ambient conditions and is thus useful for control of friction as well as characterization of tribology in nanomaterials and nanodevices.展开更多
We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal...We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal horizontal motion velocities in the research zone.Strain rate components are computed in the spheric coordinate system by the least square collocation method.According to the spatial distribution of the principal strain rate,dilation rate and maximum shear strain rate derived from GPS measurements,this paper analyses the deformation of the subordinary faults of the Zhangjiakou-Bohai fault.The principal compression strain rates are apparently greater than the principal extension strain rates.The larger shear strain rate is mainly in and around the Xianghe,Wenan and Tangshan areas in Hebei Province.According to the profiles across different segments of the Zhangjiakou-Bohai fault,the three segments glong the Zhangjiakou-Bohai fault show an obviously left-lateal strike-slip and compression characteristics.By analysis of the motion characteristics of the blocks,e.g.the Yanshan block,North China Plain block,Ordos block,and Ludong-Huanghai block in and around the North China region,this paper speculates that the dynamics of the motion styles of Zhangjiakou-Bohai fault may directly come from the relative movement between the Yanshan block and the North China plain block,and the ultimate dynamics may be the results of the collison between Indian plate and Eurasian plate,and the persistent northeastward extrusion of the Indian plate.展开更多
文摘This research paper aims to identify the effect of tire size on the handling characteristics of a trailer attached to a vehicle. In various stability tests, different models with different tires from the market were tested. A successful outcome of this research would generate an efficient tire selection process and improve the handling of a trailer attached to a vehicle while maximizing fuel efficiency. In this study, different accurate tire models using the magic formula were developed in vehicle dynamics modelling and simulation software. These models were then simulated on on-road conditions to predict vehicle and trailer behaviour under different conditions within the software. Two distinct tests were conducted, the J-Turn test and the Double Lane change test. The results of these tests were used to evaluate the handling characteristics and decide on a better tire size for the trailer attached to the vehicle.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science,ICT&Future Planning,MSIP)(Nos.2016R1A3B1908660 and 2017R1C1B5076655)(Ministry of Education and Science Technology,MEST)(No.2020R1I1A1A01070755).
文摘We present capillary grip-induced stick-slip motion,a nanoscale tribological effect,where the role of a nanoscale confined water meniscus formed between a buckled sharp tip and a glass or mica surface is addressed by shear dynamic force measurement.We obtained the effective elasticity,viscosity,conservative(elastic)and non-conservative(viscous)forces,energy dissipation,and lateral force using small oscillation,amplitude-modulation,and shear-mode quartz tuning fork-atomic force microscopy(QTFAFM).We distinguished the conservative and non-conservative forces by investigating the dependence of normal load and relative humidity,slip length,and stick-slip frequency.We found that the confined nanoscale water enhances the lateral forces via capillary grip-induced stick-slip on a rough surface,resulting in an increase of static lateral force(3-fold for both substrates)and kinetic lateral force(6-fold for glass,3-fold for mica).This work provides quantitative and systematic understanding of nanoscale tribology properties in humid ambient conditions and is thus useful for control of friction as well as characterization of tribology in nanomaterials and nanodevices.
基金funded by the Technology and Innovation Foundation of the First Monitoring Center of China Earthquake Administration (FMC2014018)Science for Earthquake Resilience Project of China Earthquake Administration (XH15062)+1 种基金 National Natural Science Foundation Item of China (4137221541272233)
文摘We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal horizontal motion velocities in the research zone.Strain rate components are computed in the spheric coordinate system by the least square collocation method.According to the spatial distribution of the principal strain rate,dilation rate and maximum shear strain rate derived from GPS measurements,this paper analyses the deformation of the subordinary faults of the Zhangjiakou-Bohai fault.The principal compression strain rates are apparently greater than the principal extension strain rates.The larger shear strain rate is mainly in and around the Xianghe,Wenan and Tangshan areas in Hebei Province.According to the profiles across different segments of the Zhangjiakou-Bohai fault,the three segments glong the Zhangjiakou-Bohai fault show an obviously left-lateal strike-slip and compression characteristics.By analysis of the motion characteristics of the blocks,e.g.the Yanshan block,North China Plain block,Ordos block,and Ludong-Huanghai block in and around the North China region,this paper speculates that the dynamics of the motion styles of Zhangjiakou-Bohai fault may directly come from the relative movement between the Yanshan block and the North China plain block,and the ultimate dynamics may be the results of the collison between Indian plate and Eurasian plate,and the persistent northeastward extrusion of the Indian plate.