Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most ca...Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most cases,the contact between asperities within an interface takes the form of lateral contact rather than peak contact.Regions devoid of contact asperities are filled with lubricating oil.However,conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth,rigid plane.These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance.To address this issue,we have developed a novel EHL interface model comprising two rough surfaces.This model allows us to explore the influence of asperity height,contact angle,and contact azimuth angle on EHL interface performance.展开更多
基金supported by the National Natural Science Foundation of China(No.52005401,No.52375127)the Cultivation Scientific Research Project of Panzhihua University(2021PY001)+1 种基金the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province(2022CL15)the Project for Science and Technology Plan of Henan Province(212102210445).
文摘Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most cases,the contact between asperities within an interface takes the form of lateral contact rather than peak contact.Regions devoid of contact asperities are filled with lubricating oil.However,conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth,rigid plane.These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance.To address this issue,we have developed a novel EHL interface model comprising two rough surfaces.This model allows us to explore the influence of asperity height,contact angle,and contact azimuth angle on EHL interface performance.