Many advanced mathematical models of biochemical, biophysical and other processes in systems biology can be described by parametrized systems of nonlinear differential equations. Due to complexity of the models, a pro...Many advanced mathematical models of biochemical, biophysical and other processes in systems biology can be described by parametrized systems of nonlinear differential equations. Due to complexity of the models, a problem of their simplification has become of great importance. In particular, rather challengeable methods of estimation of parameters in these models may require such simplifications. The paper offers a practical way of constructing approximations of nonlinearly parametrized functions by linearly parametrized ones. As the idea of such approximations goes back to Principal Component Analysis, we call the corresponding transformation Principal Component Transform. We show that this transform possesses the best individual fit property, in the sense that the corresponding approximations preserve most information (in some sense) about the original function. It is also demonstrated how one can estimate the error between the given function and its approximations. In addition, we apply the theory of tensor products of compact operators in Hilbert spaces to justify our method for the case of the products of parametrized functions. Finally, we provide several examples, which are of relevance for systems biology.展开更多
The trace of a Wishart matrix, either central or non-central, has important roles in various multi-variate statistical questions. We review several expressions of its distribution given in the literature, establish so...The trace of a Wishart matrix, either central or non-central, has important roles in various multi-variate statistical questions. We review several expressions of its distribution given in the literature, establish some new results and provide a discussion on computing methods on the distribution of the ratio: the largest eigenvalue to trace.展开更多
文摘Many advanced mathematical models of biochemical, biophysical and other processes in systems biology can be described by parametrized systems of nonlinear differential equations. Due to complexity of the models, a problem of their simplification has become of great importance. In particular, rather challengeable methods of estimation of parameters in these models may require such simplifications. The paper offers a practical way of constructing approximations of nonlinearly parametrized functions by linearly parametrized ones. As the idea of such approximations goes back to Principal Component Analysis, we call the corresponding transformation Principal Component Transform. We show that this transform possesses the best individual fit property, in the sense that the corresponding approximations preserve most information (in some sense) about the original function. It is also demonstrated how one can estimate the error between the given function and its approximations. In addition, we apply the theory of tensor products of compact operators in Hilbert spaces to justify our method for the case of the products of parametrized functions. Finally, we provide several examples, which are of relevance for systems biology.
文摘The trace of a Wishart matrix, either central or non-central, has important roles in various multi-variate statistical questions. We review several expressions of its distribution given in the literature, establish some new results and provide a discussion on computing methods on the distribution of the ratio: the largest eigenvalue to trace.