In this paper, a narrow-band tunable external-cavity semiconductor laser with the Littman set-up is reported. The laser system consists of a semiconductor laser, a blazed grating and an external mirror. Its sideband s...In this paper, a narrow-band tunable external-cavity semiconductor laser with the Littman set-up is reported. The laser system consists of a semiconductor laser, a blazed grating and an external mirror. Its sideband suppression ratio over 20 dB was obtained. Conveniently tuning in wavelength region of 797.38 - 807.26 nm was achieved. The laser is operating in single frequency with narrow linewidth smaller than 0.06 nm. The output beam has good directional stability when tuned.展开更多
Using lock-in amplifer and proportional, integral, and derivative (PID) electric circuit, the frequency of diode laser is stabilized on a highly mechanical stable Fabry-Perot (FP) cavity transmission peak. When the fr...Using lock-in amplifer and proportional, integral, and derivative (PID) electric circuit, the frequency of diode laser is stabilized on a highly mechanical stable Fabry-Perot (FP) cavity transmission peak. When the frequency locking system is on, the frequency tunable range of the laser is about 4 GHz around the D1 transition of Rb. The laser frequency tuning is implemented by scanning the FP cavity length. The fluctuation of frequency of the output laser is less than 1 MHz, and the drift of the center frequency is less than 1.5 MHz in 1.5 min. This system has great potential of the application in the experimental investigation of the interaction between light and atoms, especially, for the case of far off the atomic resonance.展开更多
After passing through four dispersive-prisms, the Q-switched Cr.LiSAF laser with broad frequency band is focused into carbon disulfide (CS2) to produce backward stimulated Brillouin scattering (SBS). Our experimental ...After passing through four dispersive-prisms, the Q-switched Cr.LiSAF laser with broad frequency band is focused into carbon disulfide (CS2) to produce backward stimulated Brillouin scattering (SBS). Our experimental results and illustrative analysis have shown that this frequency-dispersive method can efficiently reduce the broad-band SBS intensity threshold, compress its pulsewidth, and improve the beam quality.展开更多
Effective diode-pumped continuous wave (CW) tunable laser action of a new alloyed crystal Yb:LYSO is demonstrated. The alloyed LYSO crystal possesses the desirable physical and laser performance of La2SiO5 (LSO),...Effective diode-pumped continuous wave (CW) tunable laser action of a new alloyed crystal Yb:LYSO is demonstrated. The alloyed LYSO crystal possesses the desirable physical and laser performance of La2SiO5 (LSO), as well as the favorable growth properties and costs of Y2SiO5 (YSO) in the same time. With a 5 at.-% Yb:LYSO sample, the output power of 2.84 W at 1085 nm and an optical-to-optical conversion efficiency of 54.5% are achieved. Its laser wavelength can be tuned over a broad range of 81 nm, from 1030 to 1111 nm.展开更多
Operating a laser diode in an external cavity, which provides frequency-selective feedback, is a very effective method to tune the laser frequency to a range far from its free running frequency. For the Ca atomic Rams...Operating a laser diode in an external cavity, which provides frequency-selective feedback, is a very effective method to tune the laser frequency to a range far from its free running frequency. For the Ca atomic Ramsey spectroscopy experiment, we have constructed a 657-nm laser system based on the Littman-Metcalf configuration with a 660-nm commercial laser diode. Continuously 10-GHz tuning range was achieved with about 100-kHz spectral linewidth, measured with beat-note spectrum of two identical laser systems.展开更多
基金This work was supported by the Natural Science Foundation of Tianjin under Grant No. 993600711 and Doctor Foundation of Hebei.
文摘In this paper, a narrow-band tunable external-cavity semiconductor laser with the Littman set-up is reported. The laser system consists of a semiconductor laser, a blazed grating and an external mirror. Its sideband suppression ratio over 20 dB was obtained. Conveniently tuning in wavelength region of 797.38 - 807.26 nm was achieved. The laser is operating in single frequency with narrow linewidth smaller than 0.06 nm. The output beam has good directional stability when tuned.
文摘Using lock-in amplifer and proportional, integral, and derivative (PID) electric circuit, the frequency of diode laser is stabilized on a highly mechanical stable Fabry-Perot (FP) cavity transmission peak. When the frequency locking system is on, the frequency tunable range of the laser is about 4 GHz around the D1 transition of Rb. The laser frequency tuning is implemented by scanning the FP cavity length. The fluctuation of frequency of the output laser is less than 1 MHz, and the drift of the center frequency is less than 1.5 MHz in 1.5 min. This system has great potential of the application in the experimental investigation of the interaction between light and atoms, especially, for the case of far off the atomic resonance.
基金This work was supported by the China National 863 Hi-technology Programs.
文摘After passing through four dispersive-prisms, the Q-switched Cr.LiSAF laser with broad frequency band is focused into carbon disulfide (CS2) to produce backward stimulated Brillouin scattering (SBS). Our experimental results and illustrative analysis have shown that this frequency-dispersive method can efficiently reduce the broad-band SBS intensity threshold, compress its pulsewidth, and improve the beam quality.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 60578052 and 60544003.
文摘Effective diode-pumped continuous wave (CW) tunable laser action of a new alloyed crystal Yb:LYSO is demonstrated. The alloyed LYSO crystal possesses the desirable physical and laser performance of La2SiO5 (LSO), as well as the favorable growth properties and costs of Y2SiO5 (YSO) in the same time. With a 5 at.-% Yb:LYSO sample, the output power of 2.84 W at 1085 nm and an optical-to-optical conversion efficiency of 54.5% are achieved. Its laser wavelength can be tuned over a broad range of 81 nm, from 1030 to 1111 nm.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 60178016.
文摘Operating a laser diode in an external cavity, which provides frequency-selective feedback, is a very effective method to tune the laser frequency to a range far from its free running frequency. For the Ca atomic Ramsey spectroscopy experiment, we have constructed a 657-nm laser system based on the Littman-Metcalf configuration with a 660-nm commercial laser diode. Continuously 10-GHz tuning range was achieved with about 100-kHz spectral linewidth, measured with beat-note spectrum of two identical laser systems.