为了实现对焊缝表面缺陷的自动检测与分类,研究一种有效识别焊缝表面缺陷的激光视觉检测方法.通过激光视觉传感器采集焊缝图像并进行预处理,包括图像分割,灰度化,平滑去噪以及焊缝轮廓提取.采用方向梯度直方图(Histogram of Oriented Gr...为了实现对焊缝表面缺陷的自动检测与分类,研究一种有效识别焊缝表面缺陷的激光视觉检测方法.通过激光视觉传感器采集焊缝图像并进行预处理,包括图像分割,灰度化,平滑去噪以及焊缝轮廓提取.采用方向梯度直方图(Histogram of Oriented Gradient,HOG)提取焊缝激光条纹轮廓图像的特征向量.其次,基于5折-交叉验证网格搜索方法进行模型参数寻优,最终建立了支持向量机(Support Vector Machine,SVM)智能模型识别与分类焊缝表面缺陷.通过调整焊缝轮廓提取算法、HOG特征维度得到不同特征数据并进行对比、分析焊缝缺陷的识别效果.在相同试验条件下,发现支持向量机比随机森林分类器、K最近邻分类器以及朴素贝叶斯分类器的识别率更高,达到97.86%.基于HOG-SVM的焊缝表面缺陷智能识别方法可有效提高焊缝缺陷(气孔、凹陷、咬边)及无缺陷的分类精度.展开更多