This paper presents a new and safe method of fabricating super-hydrophobic surface on NiTi Shape Memory Alloy(SMA),which aims to further improve the corrosion resistance performance and biocompatibility of NiTi SMA.Th...This paper presents a new and safe method of fabricating super-hydrophobic surface on NiTi Shape Memory Alloy(SMA),which aims to further improve the corrosion resistance performance and biocompatibility of NiTi SMA.The super-hydrophobic surfaces with Water Contact Angle(WCA)of 155.4°±0.9°and Water Sliding Angle(WSA)of 4.4°±1.1°were obtained by the hybrid of laser irradiation and polydimethylsiloxane(PDMS)modification.The forming mechanism was systematically revealed via Scanming Electron Microscopy(SEM)and X-ray Photoelectron Spectroscopy(XPS).The ant-corrosion of samples was investigated in Simulated Body Fluid(SBF)via the potentiodynamie polarization(PDP)and Electrochemical Impedance Spectroscopy(EIS)tests.PDMS super-hydrophobic coatings showed superior anti-corrosion performance.The Ni ions release experiment was also conducted and the corresponding result demonstrated that the super-hydrophobic samplcs effectively inhibited the rclease of Ni ions both in clctrolyte and SBF Besides,biocompaibility was further analyzed,indicating that the prepared super-hydrophobic surfaces present a huge potential advantage in biocompatibility.展开更多
基金support from National Key R&D Program of China(No.2017YFB1104700)the National Natural Science Foundations of China(Nos.51675371,51675376 and 51675367).
文摘This paper presents a new and safe method of fabricating super-hydrophobic surface on NiTi Shape Memory Alloy(SMA),which aims to further improve the corrosion resistance performance and biocompatibility of NiTi SMA.The super-hydrophobic surfaces with Water Contact Angle(WCA)of 155.4°±0.9°and Water Sliding Angle(WSA)of 4.4°±1.1°were obtained by the hybrid of laser irradiation and polydimethylsiloxane(PDMS)modification.The forming mechanism was systematically revealed via Scanming Electron Microscopy(SEM)and X-ray Photoelectron Spectroscopy(XPS).The ant-corrosion of samples was investigated in Simulated Body Fluid(SBF)via the potentiodynamie polarization(PDP)and Electrochemical Impedance Spectroscopy(EIS)tests.PDMS super-hydrophobic coatings showed superior anti-corrosion performance.The Ni ions release experiment was also conducted and the corresponding result demonstrated that the super-hydrophobic samplcs effectively inhibited the rclease of Ni ions both in clctrolyte and SBF Besides,biocompaibility was further analyzed,indicating that the prepared super-hydrophobic surfaces present a huge potential advantage in biocompatibility.