网络链接预测能够获取网络中丢失链接的重要信息或进行网络的动态演变分析.现有的基于节点相似性的网络链接预测方法往往针对简单的一(多)阶邻居信息或特定类型的小型网络,设计较为复杂的计算方法,其扩展性和大规模网络中的可计算性都...网络链接预测能够获取网络中丢失链接的重要信息或进行网络的动态演变分析.现有的基于节点相似性的网络链接预测方法往往针对简单的一(多)阶邻居信息或特定类型的小型网络,设计较为复杂的计算方法,其扩展性和大规模网络中的可计算性都受到了严峻的挑战.文中基于深度学习在神经网络语言模型中应用的启发,提出了一个LsNet2Vec(Large-scale Network to Vector)模型.通过结合随机游走的网络数据集序列化方法,进行大规模的无监督机器学习,从而将网络中节点的结构特征信息映射到一个连续的、固定维度的实数向量.然后,使用学习到的节点结构特征向量,就可以迅速计算大规模网络中任意节点之间的相似度,以此来进行网络中的链接预测.通过在16个大规模真实数据集上和目前的多个基准的最优预测算法对比发现,LsNet2Vec模型所得到的预测总体效果是最优的:在保证了大规模网络中链接预测计算可行性的同时,于多个数据集上相对已有方法呈现出较大的AUC值提升,最高达8.9%.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
This article examined the meteorological features of the second Meiyu/Baiu episode(hereafter Meiyu Ⅱ)in 1998 and the results are summarized as follows:(1)The Meiyu Ⅱ period in 1998 has been the longest and the most ...This article examined the meteorological features of the second Meiyu/Baiu episode(hereafter Meiyu Ⅱ)in 1998 and the results are summarized as follows:(1)The Meiyu Ⅱ period in 1998 has been the longest and the most delayed ending one since 1885,which caused the great flood around the Yangtze River Basin.The circulation situation in Meiyu Ⅱ is so typical that the average geopotential height and wind fields at 500 hPa and 850 hPa are very similar to monthly mean in June.The abnormal circulation in Meiyu Ⅱ is associated with an adjusting of the Okhotsk high and short period south-north oscillation of the subtropical high.(2)The heavy rainfall around the Yangtze River during Meiyu Ⅱ period is closely related to a persistent shear line,a clear eastward moving vortex structure and a very strong jet flow at lower levels.It is very clear that the strong divergence at higher levels and convergence at lower levels occurred in situ during Meiyu Ⅱ period. (3)It is very clear that the convective activity propagates eastward quickly with a period about 7 days during Meiyu Ⅱ period.展开更多
Large-scale atmospheric information plays an important role in the regional model for the forecasts of weather such as tropical cyclone(TC).However,it is difficult to be fully represented in regional models due to dom...Large-scale atmospheric information plays an important role in the regional model for the forecasts of weather such as tropical cyclone(TC).However,it is difficult to be fully represented in regional models due to domain size and a lack of observation data,particularly at sea used in regional data assimilation.Blending analysis has been developed and implemented in regional models to reintroduce large-scale information from global model to regional analysis.Research of the impact of this large-scale blending scheme for the Global/Regional Assimilation and PrEdiction System(CMA-MESO)regional model on TC forecasting is limited and this study attempts to further progress by examining the adaptivity of the blending scheme using the two-dimensional Discrete Cosine Transform(2D-DCT)filter on the model forecast of Typhoon Haima over Shenzhen,China in 2016 and considering various cut-off wavelengths.Results showed that the error of the 24-hour typhoon track forecast can be reduced to less than 25 km by applying the scale-dependent blending scheme,indicating that the blending analysis is effectively able to minimise the large-scale bias for the initial fields.The improvement of the wind forecast is more evident for u-wind component according to the reduced root mean square errors(RMSEs)by comparing the experiments with and without blending analysis.Furthermore,the higher equitable threat score(ETS)provided implications that the precipitation prediction skills were increased in the 24h forecast by improving the representation of the large-scale feature in the CMA-MESO analysis.Furthermore,significant differences of the track error forecast were found by applying the blending analysis with different cut-off wavelengths from 400 km to 1200 km and the track error can be reduced less than by 10 km with 400 km cut-off wavelength in the first 6h forecast.It highlighted that the blending scheme with dynamic cut-off wavelengths adapted to the development of different TC systems is necessary in order to optimally introduce and inge展开更多
In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to descr...In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance.展开更多
文摘网络链接预测能够获取网络中丢失链接的重要信息或进行网络的动态演变分析.现有的基于节点相似性的网络链接预测方法往往针对简单的一(多)阶邻居信息或特定类型的小型网络,设计较为复杂的计算方法,其扩展性和大规模网络中的可计算性都受到了严峻的挑战.文中基于深度学习在神经网络语言模型中应用的启发,提出了一个LsNet2Vec(Large-scale Network to Vector)模型.通过结合随机游走的网络数据集序列化方法,进行大规模的无监督机器学习,从而将网络中节点的结构特征信息映射到一个连续的、固定维度的实数向量.然后,使用学习到的节点结构特征向量,就可以迅速计算大规模网络中任意节点之间的相似度,以此来进行网络中的链接预测.通过在16个大规模真实数据集上和目前的多个基准的最优预测算法对比发现,LsNet2Vec模型所得到的预测总体效果是最优的:在保证了大规模网络中链接预测计算可行性的同时,于多个数据集上相对已有方法呈现出较大的AUC值提升,最高达8.9%.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
基金National Natural Science Foundation of China under Grant No.49794030.
文摘This article examined the meteorological features of the second Meiyu/Baiu episode(hereafter Meiyu Ⅱ)in 1998 and the results are summarized as follows:(1)The Meiyu Ⅱ period in 1998 has been the longest and the most delayed ending one since 1885,which caused the great flood around the Yangtze River Basin.The circulation situation in Meiyu Ⅱ is so typical that the average geopotential height and wind fields at 500 hPa and 850 hPa are very similar to monthly mean in June.The abnormal circulation in Meiyu Ⅱ is associated with an adjusting of the Okhotsk high and short period south-north oscillation of the subtropical high.(2)The heavy rainfall around the Yangtze River during Meiyu Ⅱ period is closely related to a persistent shear line,a clear eastward moving vortex structure and a very strong jet flow at lower levels.It is very clear that the strong divergence at higher levels and convergence at lower levels occurred in situ during Meiyu Ⅱ period. (3)It is very clear that the convective activity propagates eastward quickly with a period about 7 days during Meiyu Ⅱ period.
基金Project of Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173610028)。
文摘Large-scale atmospheric information plays an important role in the regional model for the forecasts of weather such as tropical cyclone(TC).However,it is difficult to be fully represented in regional models due to domain size and a lack of observation data,particularly at sea used in regional data assimilation.Blending analysis has been developed and implemented in regional models to reintroduce large-scale information from global model to regional analysis.Research of the impact of this large-scale blending scheme for the Global/Regional Assimilation and PrEdiction System(CMA-MESO)regional model on TC forecasting is limited and this study attempts to further progress by examining the adaptivity of the blending scheme using the two-dimensional Discrete Cosine Transform(2D-DCT)filter on the model forecast of Typhoon Haima over Shenzhen,China in 2016 and considering various cut-off wavelengths.Results showed that the error of the 24-hour typhoon track forecast can be reduced to less than 25 km by applying the scale-dependent blending scheme,indicating that the blending analysis is effectively able to minimise the large-scale bias for the initial fields.The improvement of the wind forecast is more evident for u-wind component according to the reduced root mean square errors(RMSEs)by comparing the experiments with and without blending analysis.Furthermore,the higher equitable threat score(ETS)provided implications that the precipitation prediction skills were increased in the 24h forecast by improving the representation of the large-scale feature in the CMA-MESO analysis.Furthermore,significant differences of the track error forecast were found by applying the blending analysis with different cut-off wavelengths from 400 km to 1200 km and the track error can be reduced less than by 10 km with 400 km cut-off wavelength in the first 6h forecast.It highlighted that the blending scheme with dynamic cut-off wavelengths adapted to the development of different TC systems is necessary in order to optimally introduce and inge
基金supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012,author J.Q,http://kjt.hunan.gov.cn/+7 种基金in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry&Technology under Grant 2019JG013,author X.X,http://jwc.csuft.edu.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/.
文摘In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance.