期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
动态检测数据驱动的高速铁路有砟轨道几何不平顺超限大值预警方法
被引量:
3
1
作者
曹雨欣
徐鹏
+2 位作者
杨雅琴
刘丙强
李晔
《铁道建筑》
北大核心
2023年第3期23-29,共7页
为了对高速铁路有砟轨道几何不平顺幅值超限进行准确预警,结合局部异常因子算法,提出了一种动态检测数据驱动的轨道几何不平顺维修作业识别方法。首先,基于支持向量机(Support Vector Machine,SVM)算法对轨道几何不平顺超限劣化过程进...
为了对高速铁路有砟轨道几何不平顺幅值超限进行准确预警,结合局部异常因子算法,提出了一种动态检测数据驱动的轨道几何不平顺维修作业识别方法。首先,基于支持向量机(Support Vector Machine,SVM)算法对轨道几何不平顺超限劣化过程进行分析,将影响列车运行的持续劣化超限作为研究对象;随后,使用局部异常因子(Local Outlier Factor,LOF)算法对轨道几何不平顺维修作业进行识别,依据识别结果划分超限劣化过程;最后,对两次维修作业之间的检测数据进行分析,验证轨道几何不平顺幅值的劣化为线性过程,并对几何不平顺幅值进行预测。利用该方法对某线路进行劣化分析,并与近6年的动态检测数据对比。结果表明:该方法识别维修作业准确度达91%;基于鲁棒回归的劣化模型能够准确预测轨道几何不平顺超限大值。该方法不需历史维修作业数据,可自动划分劣化过程,通过几何不平顺幅值预测模型对超限发展进行预测,及时预警几何不平顺超限大值。
展开更多
关键词
高速铁路
有砟轨道
几何不平顺
统计分析
局部异常因子算法
持续劣化超限
大值预警
下载PDF
职称材料
题名
动态检测数据驱动的高速铁路有砟轨道几何不平顺超限大值预警方法
被引量:
3
1
作者
曹雨欣
徐鹏
杨雅琴
刘丙强
李晔
机构
北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室
中国国家铁路集团有限公司工电部
中国铁路南昌局集团有限公司
出处
《铁道建筑》
北大核心
2023年第3期23-29,共7页
基金
中国国家铁路集团有限公司科技研究开发计划(P2020T001)。
文摘
为了对高速铁路有砟轨道几何不平顺幅值超限进行准确预警,结合局部异常因子算法,提出了一种动态检测数据驱动的轨道几何不平顺维修作业识别方法。首先,基于支持向量机(Support Vector Machine,SVM)算法对轨道几何不平顺超限劣化过程进行分析,将影响列车运行的持续劣化超限作为研究对象;随后,使用局部异常因子(Local Outlier Factor,LOF)算法对轨道几何不平顺维修作业进行识别,依据识别结果划分超限劣化过程;最后,对两次维修作业之间的检测数据进行分析,验证轨道几何不平顺幅值的劣化为线性过程,并对几何不平顺幅值进行预测。利用该方法对某线路进行劣化分析,并与近6年的动态检测数据对比。结果表明:该方法识别维修作业准确度达91%;基于鲁棒回归的劣化模型能够准确预测轨道几何不平顺超限大值。该方法不需历史维修作业数据,可自动划分劣化过程,通过几何不平顺幅值预测模型对超限发展进行预测,及时预警几何不平顺超限大值。
关键词
高速铁路
有砟轨道
几何不平顺
统计分析
局部异常因子算法
持续劣化超限
大值预警
Keywords
high
speed
railway
ballast
track
geometric
irregularity
statistical
analysis
local
outlier
factor
algorithm
continuous
deterioration
overrun
large
value
warning
分类号
U213.2 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
动态检测数据驱动的高速铁路有砟轨道几何不平顺超限大值预警方法
曹雨欣
徐鹏
杨雅琴
刘丙强
李晔
《铁道建筑》
北大核心
2023
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部