The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magne...The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magnetic liquid rotation seal at low temperature has not been reported both in theory and in application up to now. A key factor restricting the application of the large-diameter magnetic liquid rotation seal at low temperature is the high breakaway torque. In this paper, the factors that influence the breakaway torque including the number of seal stages, the injected quantity of magnetic liquid and the standing time at normal temperature are studied. Two kinds of magnetic liquid with variable content of large particles are prepared first, and a seal feedthrough with 140 mm shaft diameter is used in the experiments. All experiments are carried out in a low temperature chamber with a temperature range from 200℃ to -100℃. Different numbers of seal stages are tested under the same condition to study the relation between the breakaway torque and the number of seal stages. Variable quantity of magnetic liquid is injected in the seal gap to get the relation curve of the breakaway torque and the injecting quantity of magnetic liquid. In the experiment for studying the relation between the breakaway torque and the standing time at the normal temperature, the seal feedtrough is laid at normal temperature for different period of time before it is put in the low temperature chamber. The experimental results show that the breakaway torque is proportional to the number of seal stages, the injected quantity of magnetic liquid and the standing time at the normal temperature. Meanwhile, the experimental results are analyzed and the torque formula of magnetic liquid rotation seal at low temperature is deduced from the Navier-Stokes equation on the base of the model of magnetic liquid rotation seal. The presented research can make wider application of the magnetic liquid seal in general. And the large-diameter magnetic展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50875017)
文摘The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magnetic liquid rotation seal at low temperature has not been reported both in theory and in application up to now. A key factor restricting the application of the large-diameter magnetic liquid rotation seal at low temperature is the high breakaway torque. In this paper, the factors that influence the breakaway torque including the number of seal stages, the injected quantity of magnetic liquid and the standing time at normal temperature are studied. Two kinds of magnetic liquid with variable content of large particles are prepared first, and a seal feedthrough with 140 mm shaft diameter is used in the experiments. All experiments are carried out in a low temperature chamber with a temperature range from 200℃ to -100℃. Different numbers of seal stages are tested under the same condition to study the relation between the breakaway torque and the number of seal stages. Variable quantity of magnetic liquid is injected in the seal gap to get the relation curve of the breakaway torque and the injecting quantity of magnetic liquid. In the experiment for studying the relation between the breakaway torque and the standing time at the normal temperature, the seal feedtrough is laid at normal temperature for different period of time before it is put in the low temperature chamber. The experimental results show that the breakaway torque is proportional to the number of seal stages, the injected quantity of magnetic liquid and the standing time at the normal temperature. Meanwhile, the experimental results are analyzed and the torque formula of magnetic liquid rotation seal at low temperature is deduced from the Navier-Stokes equation on the base of the model of magnetic liquid rotation seal. The presented research can make wider application of the magnetic liquid seal in general. And the large-diameter magnetic