期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
用于大规模深度卷积分类网络DOA估计的标签分解方法
被引量:
9
1
作者
吴双
袁野
+2 位作者
马育红
黄敬健
袁乃昌
《信号处理》
CSCD
北大核心
2021年第1期1-10,共10页
为了有效地解决使用深度神经网络求解波达方向(DOA)估计涉及到的大规模分类器的训练和部署实现,本文提出将传统的one-hot分类器分解为多个类别互质的小分类器,然后联合使用多个互质分类器的分类结果重构原始one-hot标签。首先使用标签分...
为了有效地解决使用深度神经网络求解波达方向(DOA)估计涉及到的大规模分类器的训练和部署实现,本文提出将传统的one-hot分类器分解为多个类别互质的小分类器,然后联合使用多个互质分类器的分类结果重构原始one-hot标签。首先使用标签分解,将原始标签分解为多个互质的小标签,小标签对应的类别为原始类别对质数取余数的结果。其次,通过独立并行地训练每一个互质分类器,降低了大类别条件下分类器的训练难度。仿真结果表明,相比one-hot分类器,互质分类器网络的复杂度低,易于训练。另外,使用互质分类器进行DOA估计能够实现超分辨并且估计的精度比one-hot分类器以及稀疏贝叶斯学习等方法更高。
展开更多
关键词
波达方向估计
深度卷积神经网络
标签分解
大规模分类问题
下载PDF
职称材料
题名
用于大规模深度卷积分类网络DOA估计的标签分解方法
被引量:
9
1
作者
吴双
袁野
马育红
黄敬健
袁乃昌
机构
国防科技大学电子信息系统复杂电磁环境效应国家重点实验室
出处
《信号处理》
CSCD
北大核心
2021年第1期1-10,共10页
文摘
为了有效地解决使用深度神经网络求解波达方向(DOA)估计涉及到的大规模分类器的训练和部署实现,本文提出将传统的one-hot分类器分解为多个类别互质的小分类器,然后联合使用多个互质分类器的分类结果重构原始one-hot标签。首先使用标签分解,将原始标签分解为多个互质的小标签,小标签对应的类别为原始类别对质数取余数的结果。其次,通过独立并行地训练每一个互质分类器,降低了大类别条件下分类器的训练难度。仿真结果表明,相比one-hot分类器,互质分类器网络的复杂度低,易于训练。另外,使用互质分类器进行DOA估计能够实现超分辨并且估计的精度比one-hot分类器以及稀疏贝叶斯学习等方法更高。
关键词
波达方向估计
深度卷积神经网络
标签分解
大规模分类问题
Keywords
direction
of
arrival
estimation
deep
convolution
neural
network
label
decomposition
large
size
classification
problem
分类号
TN911.7 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
用于大规模深度卷积分类网络DOA估计的标签分解方法
吴双
袁野
马育红
黄敬健
袁乃昌
《信号处理》
CSCD
北大核心
2021
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部