Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuris...Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics.展开更多
To cope with various unpredictable changes in large scale parts,the concept of reconfigurable manufacturing system (RMS) for machining these components is presented.Considering with large-size space measurement and th...To cope with various unpredictable changes in large scale parts,the concept of reconfigurable manufacturing system (RMS) for machining these components is presented.Considering with large-size space measurement and the fixed-free manufacture mode,an automatically localizing machining method for large scale part is studied in this paper,and the architecture of the RMS for machining large scale parts is proposed.According to the method and structure,the automatically localizing model is established.The theoretical analysis and simulation examples demonstrate the feasibility and validity of the proposed method,and the results indicate that the method is suitable and effective for machining large scale components in significant scientific projects.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61471055
文摘Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics.
基金Funded by the National Natural Science Foundation of Chinathe Development Program for Outstanding Young Teachers in Harbin Institute of Technology
文摘To cope with various unpredictable changes in large scale parts,the concept of reconfigurable manufacturing system (RMS) for machining these components is presented.Considering with large-size space measurement and the fixed-free manufacture mode,an automatically localizing machining method for large scale part is studied in this paper,and the architecture of the RMS for machining large scale parts is proposed.According to the method and structure,the automatically localizing model is established.The theoretical analysis and simulation examples demonstrate the feasibility and validity of the proposed method,and the results indicate that the method is suitable and effective for machining large scale components in significant scientific projects.