针对目前旅行商问题的求解精度较差、容易陷入局部最优和收敛效果慢等缺点,根据模拟退火算法和大邻域搜索算法的特点,提出了一种基于大规模邻域搜索的模拟退火算法解决旅行商问题(simulated annealing algorithm with large neighborhoo...针对目前旅行商问题的求解精度较差、容易陷入局部最优和收敛效果慢等缺点,根据模拟退火算法和大邻域搜索算法的特点,提出了一种基于大规模邻域搜索的模拟退火算法解决旅行商问题(simulated annealing algorithm with large neighborhood search, SALNS)。上述算法在模拟退火的基础上修改算法的温度变化函数,构造旅行商问题的解空间,采用大邻域搜索技术和2-OPT算子增强局部搜索能力可以很好的解决旅行商问题。选取若干TSPLIB数据集进行实验,对降温函数和运行时间进行试验,并与一些新型智能算法对比。仿真结果表明,所提方法收敛效果好和鲁棒性强能够有效求解旅行商问题。展开更多
文摘针对目前旅行商问题的求解精度较差、容易陷入局部最优和收敛效果慢等缺点,根据模拟退火算法和大邻域搜索算法的特点,提出了一种基于大规模邻域搜索的模拟退火算法解决旅行商问题(simulated annealing algorithm with large neighborhood search, SALNS)。上述算法在模拟退火的基础上修改算法的温度变化函数,构造旅行商问题的解空间,采用大邻域搜索技术和2-OPT算子增强局部搜索能力可以很好的解决旅行商问题。选取若干TSPLIB数据集进行实验,对降温函数和运行时间进行试验,并与一些新型智能算法对比。仿真结果表明,所提方法收敛效果好和鲁棒性强能够有效求解旅行商问题。