期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于KRB-YOLOv5s的煤矸识别方法
1
作者 葛庆楠 程刚 赵东洋 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第4期385-392,共8页
为解决煤矿高粉尘、低照度、高噪声与堆叠等复杂环境因素导致的煤矸识别精度低、漏检与误检问题,提出一种基于KRB-YOLOv5s算法的煤矸识别方法。采用K均值聚类(K-means++)算法对数据集进行重新聚类,以得到更精准的锚框参数;在YOLOv5s主... 为解决煤矿高粉尘、低照度、高噪声与堆叠等复杂环境因素导致的煤矸识别精度低、漏检与误检问题,提出一种基于KRB-YOLOv5s算法的煤矸识别方法。采用K均值聚类(K-means++)算法对数据集进行重新聚类,以得到更精准的锚框参数;在YOLOv5s主干网络中引入大核卷积结构重参数(RepLKNet)网络,通过大核卷积架构提取目标更高层级的特征信息;在YOLOv5s颈部引入加权双向特征金字塔(Bi FPN)网络,通过双向跨尺度连接对目标多尺度特征进行快速捕捉与融合。在煤矸数据集上开展实验,结果表明:与其他YOLO系列检测算法相比,KRB-YOLOv5s算法在高粉尘、低照度、高噪声与堆叠工况下的综合检测性能最佳,识别精度均值(m AP)达94.5%,比YOLOv5s算法提高了3.3个百分点。研究结论为煤矿复杂工况下煤矸智能分选提供参考。 展开更多
关键词 煤矸识别方法 大核卷积架构 多尺度特征 YOLOv5s算法 煤矸智能分选
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部