期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于采样的大规模图聚类分析算法 被引量:3
1
作者 张建朋 陈鸿昶 +2 位作者 王凯 祝凯捷 王亚文 《电子学报》 EI CAS CSCD 北大核心 2019年第8期1731-1737,共7页
针对当前聚类方法(例如经典的GN算法)计算复杂度过高、难以适用于大规模图的聚类问题,本文首先对大规模图的采样算法展开研究,提出了能够有效保持原始图聚类结构的图采样算法(Clustering-structure Representative Sampling,CRS),它能... 针对当前聚类方法(例如经典的GN算法)计算复杂度过高、难以适用于大规模图的聚类问题,本文首先对大规模图的采样算法展开研究,提出了能够有效保持原始图聚类结构的图采样算法(Clustering-structure Representative Sampling,CRS),它能在采样图中产生高质量的聚类代表点,并根据相应的扩张准则进行采样扩张.此采样算法能够很好地保持原始图的内在聚类结构.其次,提出快速的整体样本聚类推断(Population Clustering Inference,PCI)算法,它利用采样子图的聚类标签对整体图的聚类结构进行推断.实验结果表明本文算法对大规模图数据具有较高的聚类质量和处理效率,能够很好地完成大规模图的聚类任务. 展开更多
关键词 大规模图 图采样 图聚类 整体推断 聚类代表点 扩张准则
下载PDF
大图采样方法综述
2
作者 张翔 倪瑜那 +5 位作者 李松岳 高刚毅 方林聪 王毅刚 赵颖 周志光 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第12期1805-1814,共10页
大图采样是常用的网络图简化方法,可显著降低大图数据的规模.文中从随机图采样、特征驱动的大图采样方法、大图采样的评估指标和大图采样方法的应用4个角度进行综述.首先介绍随机点、随机边和随机游走的随机图采样方法;然后论述拓扑结... 大图采样是常用的网络图简化方法,可显著降低大图数据的规模.文中从随机图采样、特征驱动的大图采样方法、大图采样的评估指标和大图采样方法的应用4个角度进行综述.首先介绍随机点、随机边和随机游走的随机图采样方法;然后论述拓扑结构、社区结构、动态网络关联和语义关联特征驱动的大图采样方法;再介绍拓扑结构、视觉感知和特征驱动的大图采样指标;最后介绍了大图采样方法在社交网络、地理交通、生物医学和深度学习等领域的应用,并展望了该方法的发展前景. 展开更多
关键词 大图采样 随机分布 特征保持 采样评估
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部