This article considers the existence of solution for a boundary value problem of fractional order, involving Caputo's derivative{C0D^δtu(t)=g(t,u(t)),0〈t〈1,1〈δ〈2,u(0)α≠0,u(1)=β≠0.
The vibration problem of a pile of arbitrary segments withvariable modulus modules under ex- citing force is established, inwhich the influence of the soil under pile toe and the surroundingsis tak- en into account. W...The vibration problem of a pile of arbitrary segments withvariable modulus modules under ex- citing force is established, inwhich the influence of the soil under pile toe and the surroundingsis tak- en into account. With Laplace transforms, the transmitfunctions for velocity and displacement of pile are derived.Furthermore, in terms of the convolution theorem and inversed Laplacetransform, an analytical solution for the time domain response of apile subjected to semi-sine impulse is developed, which is thetheoretical basis of the sonic method in pile integrity testing. Basedon the solution, the vibration properties of pile with sharp orcontinuous modulus are studied. The validity of this approach isverified through field dynamic tests on some engineering piles. Itshows that the theoretical predic- tion ad the response of the pileare in good agreement.展开更多
Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
The limit properties of the dependent sequence of absolutely continuous random variables are investigated by using the notion of likelihood ratio, and a class of strong limit theorems, represented by inequalities, i.e...The limit properties of the dependent sequence of absolutely continuous random variables are investigated by using the notion of likelihood ratio, and a class of strong limit theorems, represented by inequalities, i.e. the strong deviation theorems, are obtained. In the proof an approach of applying the Laplace transformation to the investigation of the strong limit theorems is proposed.展开更多
In this paper, the fluid flow differential equation based on the homogenous reservoirs model is first reviewed. Then a theorem about the formal similarity of solutions in the Laplace space with outer boundary conditio...In this paper, the fluid flow differential equation based on the homogenous reservoirs model is first reviewed. Then a theorem about the formal similarity of solutions in the Laplace space with outer boundary conditions and inner boundary condition is presented and proved. Lastly, a corollary of our theorem is given particularly on inner boundary. The obtained results are very helpful for understanding inherent laws of relevant engineering science and designing practical analysis software.展开更多
Based on the Biot’s wave equation and theory of thermodynamic, Darcy law of fluid and the modified Fourier law of heat conduction, a nonlinear fully coupled thermo-hydro-elastodynamic response model (THMD) for satura...Based on the Biot’s wave equation and theory of thermodynamic, Darcy law of fluid and the modified Fourier law of heat conduction, a nonlinear fully coupled thermo-hydro-elastodynamic response model (THMD) for saturated porous medium is derived. The compressibility of the medium, the influence of fluid flux on the heat flux, and the influence of change of temperature on the fluid flux are considered in this model. With some simplification, the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic (TMD) model based on the traditional Fourier law and, further more, to the Biot’s wave equation without considering the heat phase. At last, the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique, the numerical results are used to discuss the influence of Biot’s modulus M and coefficient of thermoos-mosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.展开更多
In this paper, oscillation of solutions to a class of impulsive delay parabolic partial differential equations system with higher order Laplace operator is studied. Under two different boundary value conditions, we es...In this paper, oscillation of solutions to a class of impulsive delay parabolic partial differential equations system with higher order Laplace operator is studied. Under two different boundary value conditions, we establish some sufficient criteria with respect to the oscillations of such systems, employing first-order impulsive delay differential inequalities. The results fully reflect the influence action of impulsive and delay in oscillation.展开更多
In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, ...In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, based on the Laplace transform and inversion formula, we studied the temperature analytical solution of one-dimensional unsteady heat conduction for multi-layer overlying strata under the first and the forth kinds of boundary conditions, and we also carried out a numerical simulation of twodimensional unsteady heat conduction by the COMSOL multiphysics. The results show that when the boundary temperature of surrounding rock has a linear decrease because of a directional movement of heat source in the UCG flame working face, the temperature in surrounding rock increases first and then decreases with time, the peak of temperature curve decreases gradually and its position moves inside surrounding rock from the boundary. In the surrounding rock of UCG stope, there is an envelope curve of temperature curve clusters. We analyzed the influence of thermophysical parameters on envelope curves and put forward to take envelope curve as the calculation basis for ranges of burnt surrounding rock, coal-wall coking cycle and heat influence. Finally, the concrete numerical values are given by determining those judgement standards and temperature thresholds, which basically tally with the field geophysical prospecting results.展开更多
One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing...One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.展开更多
Based on the thermodynamics of irreversible processes, the mass conservation equation and heat energy balance equation are established. The governing equations of thermal consolidation for homogeneous isotropic materi...Based on the thermodynamics of irreversible processes, the mass conservation equation and heat energy balance equation are established. The governing equations of thermal consolidation for homogeneous isotropic materials are presented, accounting for the coupling effects of the temperature, stress and displacement fields. The case of a saturated medium with a long cylindrical cavity subjected to a variable thermal loading and a variable hydrostatic pressure (or a variable radial water flux) with time is considered. The analytical solutions are derived in the Laplace transform space. Then, the time domain solutions are obtained by a numerical inversion scheme. The results of a typical example indicate that thermodynamically coupled effects have considerable influences on thermal responses.展开更多
基金Supported by the National 973-Project from MOST and Trans-Century Training Programme Foundation for the Talents by Ministry of Education and the Postdoctoral Foundation of China.
文摘This article considers the existence of solution for a boundary value problem of fractional order, involving Caputo's derivative{C0D^δtu(t)=g(t,u(t)),0〈t〈1,1〈δ〈2,u(0)α≠0,u(1)=β≠0.
文摘The vibration problem of a pile of arbitrary segments withvariable modulus modules under ex- citing force is established, inwhich the influence of the soil under pile toe and the surroundingsis tak- en into account. With Laplace transforms, the transmitfunctions for velocity and displacement of pile are derived.Furthermore, in terms of the convolution theorem and inversed Laplacetransform, an analytical solution for the time domain response of apile subjected to semi-sine impulse is developed, which is thetheoretical basis of the sonic method in pile integrity testing. Basedon the solution, the vibration properties of pile with sharp orcontinuous modulus are studied. The validity of this approach isverified through field dynamic tests on some engineering piles. Itshows that the theoretical predic- tion ad the response of the pileare in good agreement.
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
文摘The limit properties of the dependent sequence of absolutely continuous random variables are investigated by using the notion of likelihood ratio, and a class of strong limit theorems, represented by inequalities, i.e. the strong deviation theorems, are obtained. In the proof an approach of applying the Laplace transformation to the investigation of the strong limit theorems is proposed.
文摘In this paper, the fluid flow differential equation based on the homogenous reservoirs model is first reviewed. Then a theorem about the formal similarity of solutions in the Laplace space with outer boundary conditions and inner boundary condition is presented and proved. Lastly, a corollary of our theorem is given particularly on inner boundary. The obtained results are very helpful for understanding inherent laws of relevant engineering science and designing practical analysis software.
基金Supported by the National Natural Science Foundation of China (Grant No. 50679074) ZJ(NB)NSF (Grant Nos. Y107637, 2007A6100626)
文摘Based on the Biot’s wave equation and theory of thermodynamic, Darcy law of fluid and the modified Fourier law of heat conduction, a nonlinear fully coupled thermo-hydro-elastodynamic response model (THMD) for saturated porous medium is derived. The compressibility of the medium, the influence of fluid flux on the heat flux, and the influence of change of temperature on the fluid flux are considered in this model. With some simplification, the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic (TMD) model based on the traditional Fourier law and, further more, to the Biot’s wave equation without considering the heat phase. At last, the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique, the numerical results are used to discuss the influence of Biot’s modulus M and coefficient of thermoos-mosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.
基金the Natural Science Foundation of Hunan Province under Grant 05JJ40008.
文摘In this paper, oscillation of solutions to a class of impulsive delay parabolic partial differential equations system with higher order Laplace operator is studied. Under two different boundary value conditions, we establish some sufficient criteria with respect to the oscillations of such systems, employing first-order impulsive delay differential inequalities. The results fully reflect the influence action of impulsive and delay in oscillation.
基金supported by the State Key Laboratory of Coal Resources and Safe Mining (No. SKLCRSM10X04)the National Natural Science Foundation of China ((No. 21243006)+1 种基金the Foundation of Ministry of Education of China ((No. 02019)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.SZBF2011-6-B35)
文摘In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, based on the Laplace transform and inversion formula, we studied the temperature analytical solution of one-dimensional unsteady heat conduction for multi-layer overlying strata under the first and the forth kinds of boundary conditions, and we also carried out a numerical simulation of twodimensional unsteady heat conduction by the COMSOL multiphysics. The results show that when the boundary temperature of surrounding rock has a linear decrease because of a directional movement of heat source in the UCG flame working face, the temperature in surrounding rock increases first and then decreases with time, the peak of temperature curve decreases gradually and its position moves inside surrounding rock from the boundary. In the surrounding rock of UCG stope, there is an envelope curve of temperature curve clusters. We analyzed the influence of thermophysical parameters on envelope curves and put forward to take envelope curve as the calculation basis for ranges of burnt surrounding rock, coal-wall coking cycle and heat influence. Finally, the concrete numerical values are given by determining those judgement standards and temperature thresholds, which basically tally with the field geophysical prospecting results.
基金Project(50608038/E0806) supported by the National Natural Science Foundation of China
文摘One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.
基金supported by the National Natural Science Foundation of China (No. 50879003).
文摘Based on the thermodynamics of irreversible processes, the mass conservation equation and heat energy balance equation are established. The governing equations of thermal consolidation for homogeneous isotropic materials are presented, accounting for the coupling effects of the temperature, stress and displacement fields. The case of a saturated medium with a long cylindrical cavity subjected to a variable thermal loading and a variable hydrostatic pressure (or a variable radial water flux) with time is considered. The analytical solutions are derived in the Laplace transform space. Then, the time domain solutions are obtained by a numerical inversion scheme. The results of a typical example indicate that thermodynamically coupled effects have considerable influences on thermal responses.