Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in re...Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys.展开更多
In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear pro...In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear property.Results showed that a surface indentation of 0.3 mm effectively eliminated the welding defects.Microhardness of the stir zone(SZ) was higher than that of the base material(BM) and the hardness decreased with increasing the heat input during welding.The optimum failure load of 7.72 k N was obtained when using rotating speed of 2300 rpm,plunge depth of 2.4 mm and refilling time of 3.5 s.Three fracture modes were obtained during the lap shear test and all were affected by the hook defect.展开更多
Analysis of cigarette lap adhesive by pyrolysis chromatography-mass spectrometry.Cigarette lab adhesive will burn with smoke.The burning products will be breathed in by smoker and possibly result in some health proble...Analysis of cigarette lap adhesive by pyrolysis chromatography-mass spectrometry.Cigarette lab adhesive will burn with smoke.The burning products will be breathed in by smoker and possibly result in some health problems.The burning process of two types of cigarette lab adhesives has been studied using a pyrolysis as a model of the combustion and the pyrolysis products has been analyzed by GC-MS.As a result,23 and 14 compounds were detected in J-1 and J-2 samples,respectively.The data will act as a base for establishing safety and quality standards of assistant materials in cigarette.展开更多
Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent...Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.展开更多
On July 22, 2013, an earthquake (Ms 6.6) occurred in Minxian, Gansu Province of China, causing a large number of landslides. Based on high resolution remote sensing images before and after this event, we made the vi...On July 22, 2013, an earthquake (Ms 6.6) occurred in Minxian, Gansu Province of China, causing a large number of landslides. Based on high resolution remote sensing images before and after this event, we made the visual interpretation to these coseismic landslides, and prepared a detailed inventory. The inventory registers totally 6 478 landslides in the study area. Of them, 3 322 landslides are larger than 100 m2. Based on 5 m resolution DEM, these landslides were used to perform spatial analyses using landslide number density (LND) and landslide area percentage (LAP). The results show that the highest LND and LAP values are in the elevation range of 2 300-2 500 m and steeper slopes. Slopes facing E, SE, S and SW directions, slopes with larger absolute curvature values, ridges, scopes of gravel beds of Late Pleistocene (Qp) and the VIII-degree seismic intensity are more prone to sliding with high LND and LAP values. The largest LND and LAP values are in the scopes of 0.08 and 0.24 g, respectively. According to landslide distribution, we infer that F2-2 branch of Lintan-Dangchang fault is the seismogenic fault. With the increasing distances to this branch fault and drainages, LND and LAP values tend to decrease.展开更多
Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min w...Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 ram. It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force (TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN ( 15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu20 layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased, the influence factors varied as follows: the joining area increased first and then decreased; the degra- dation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.展开更多
AIM:To determine the efficacy and safety benefits of performing intraoperative cholangiography(IOC)during laparoscopic cholecystectomy(LC)to treat symptomatic cholelithiasis.METHODS:Patients admitted to the Minimally ...AIM:To determine the efficacy and safety benefits of performing intraoperative cholangiography(IOC)during laparoscopic cholecystectomy(LC)to treat symptomatic cholelithiasis.METHODS:Patients admitted to the Minimally Invasive Surgery Center of Tianjin Nankai Hospital between January2012 and January 2014 for management of symptomaticcholelithiasis were recruited for this prospective randomized trial.Study enrollment was offered to patients with clinical presentation of biliary colic symptoms,radiological findings suggestive of gallstones,and normal serum biochemistry results.Study participants were randomized to receive either routine LC treatment or LC+IOC treatment.The routine LC procedure was carried out using the standard four-port technique;the LC+IOC procedure was carried out with the addition of meglumine diatrizoate(1:1 dilution with normal saline)injection via a catheter introduced through a small incision in the cystic duct made by laparoscopic scissors.Operative data and postoperative outcomes,including operative time,retained common bile duct(CBD)stones,CBD injury,other complications and length of hospital stay,were recorded for comparative analysis.Inter-group differences were statistically assessed by theχ2 test(categorical variables)and Fisher’s exact test(binary variables),with the threshold for statistical significance set at P<0.05.RESULTS:A total of 371 patients were enrolled in the trial(late-adolescent to adult,age range:16-70 years),with 185 assigned to the routine LC group and 186 to the LC+IOC group.The two treatment groups were similar in age,sex,body mass index,duration of symptomology,number and size of gallstones,and clinical symptoms.The two treatment groups also showed no significant differences in the rates of successful LC(98.38%vs97.85%),CBD stone retainment(0.54%vs 0.00%),CBD injury(0.54%vs 0.53%)and other complications(2.16%vs 2.15%),as well as in duration of hospital stay(5.10±1.41 d vs 4.99±1.53 d).However,the LC+IOC treatment group showed significantly longer mean operati展开更多
Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstruct...Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstructure, lap-shear performance and failure mode were investigated. The pin profile was found to significantly influence the hook geometry, which in turn strongly influenced the joint strength and the failure mode. Welds produced in alloy 2014-T4 Alclad sheets by using triangular and threaded taper cylindrical tools exhibited an average lap-shear failure load of 16.5 and 19.5 kN, respectively, while the average failure load for standard riveted joints was only 3.4 kN. Welds produced in alloy 2014-T6 Alclad sheets and in alloy 2014-T4 bare sheets (i.e., no Alclad) were comparatively evaluated with those produced in alloy 2014-T4 Alclad sheets. While the welds made (with threaded taper cylindrical tool) in T6 and T4 conditions showed very similar lap-shear failure loads, the joint efficiency of the welds made in T6 condition (43%) was considerably lower (because of the higher base material strength) than those made in T4 condition (51%). The Alclad layers were found to present no special problems in friction stir lap welding. Welds made with triangular tool in alloy 2014-T4 Alclad and bare sheets showed very similar lap-shear failure loads. The present work provides some useful insights into the use of friction stir welding for joining Al alloys in lap configuration.展开更多
In friction stir welding (FSW), tool geometry plays an important role in joint quality. In order to improve mechanical properties of friction stir lap welding (FSLW)joint, a tool with a reverse-threaded pin was de...In friction stir welding (FSW), tool geometry plays an important role in joint quality. In order to improve mechanical properties of friction stir lap welding (FSLW)joint, a tool with a reverse-threaded pin was designed in the present study. Using 2024-T4 aluminum alloy as the research object, tools with the full- threaded pin and reverse-threaded pin were used in FSLW. Results showed that, when using the same parameter combination, FSLW joint using the reverse-threaded pin owned bigger effective sheet thick- ness (EST), bigger lap width and better lap shear failure strength. Compared with the full-threaded pin, fracture mode of the FSLW joint changed from shear fracture mode to tensile fracture mode when the reverse-threaded pin was used. Fracture morphologies presented ductile fracture.展开更多
The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by m...The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.展开更多
基金The authors would like to thank the National Natural Science Foundation of China(Grant No.51971183)Natural Sciences and Engineering Research Council of Canada(NSERC)+1 种基金Fundamental Research Funds for the Central Universities(XDJK2018B108,SWU119065)Venture and Innovation Support Program for Chongqing Overseas Returnees(CX2018082)in the form of international research collaboration.
文摘Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys.
基金supported by the National Natural Science Foundation of China (No.51204111)
文摘In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear property.Results showed that a surface indentation of 0.3 mm effectively eliminated the welding defects.Microhardness of the stir zone(SZ) was higher than that of the base material(BM) and the hardness decreased with increasing the heat input during welding.The optimum failure load of 7.72 k N was obtained when using rotating speed of 2300 rpm,plunge depth of 2.4 mm and refilling time of 3.5 s.Three fracture modes were obtained during the lap shear test and all were affected by the hook defect.
文摘Analysis of cigarette lap adhesive by pyrolysis chromatography-mass spectrometry.Cigarette lab adhesive will burn with smoke.The burning products will be breathed in by smoker and possibly result in some health problems.The burning process of two types of cigarette lab adhesives has been studied using a pyrolysis as a model of the combustion and the pyrolysis products has been analyzed by GC-MS.As a result,23 and 14 compounds were detected in J-1 and J-2 samples,respectively.The data will act as a base for establishing safety and quality standards of assistant materials in cigarette.
基金Project (2011BAB206006) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (2009ZE56011) supported by the Aviation Science Funds of ChinaProject (GJJ12411) supported by the Education Department of Jiangxi Province,China
文摘Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.
基金supported by the National Natural Science Foundation of China (No.41472202)Key Laboratory for Geo-hazards in Loess area,MLR (No.KLGLAMLR2014003)
文摘On July 22, 2013, an earthquake (Ms 6.6) occurred in Minxian, Gansu Province of China, causing a large number of landslides. Based on high resolution remote sensing images before and after this event, we made the visual interpretation to these coseismic landslides, and prepared a detailed inventory. The inventory registers totally 6 478 landslides in the study area. Of them, 3 322 landslides are larger than 100 m2. Based on 5 m resolution DEM, these landslides were used to perform spatial analyses using landslide number density (LND) and landslide area percentage (LAP). The results show that the highest LND and LAP values are in the elevation range of 2 300-2 500 m and steeper slopes. Slopes facing E, SE, S and SW directions, slopes with larger absolute curvature values, ridges, scopes of gravel beds of Late Pleistocene (Qp) and the VIII-degree seismic intensity are more prone to sliding with high LND and LAP values. The largest LND and LAP values are in the scopes of 0.08 and 0.24 g, respectively. According to landslide distribution, we infer that F2-2 branch of Lintan-Dangchang fault is the seismogenic fault. With the increasing distances to this branch fault and drainages, LND and LAP values tend to decrease.
文摘Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 ram. It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force (TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN ( 15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu20 layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased, the influence factors varied as follows: the joining area increased first and then decreased; the degra- dation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.
文摘AIM:To determine the efficacy and safety benefits of performing intraoperative cholangiography(IOC)during laparoscopic cholecystectomy(LC)to treat symptomatic cholelithiasis.METHODS:Patients admitted to the Minimally Invasive Surgery Center of Tianjin Nankai Hospital between January2012 and January 2014 for management of symptomaticcholelithiasis were recruited for this prospective randomized trial.Study enrollment was offered to patients with clinical presentation of biliary colic symptoms,radiological findings suggestive of gallstones,and normal serum biochemistry results.Study participants were randomized to receive either routine LC treatment or LC+IOC treatment.The routine LC procedure was carried out using the standard four-port technique;the LC+IOC procedure was carried out with the addition of meglumine diatrizoate(1:1 dilution with normal saline)injection via a catheter introduced through a small incision in the cystic duct made by laparoscopic scissors.Operative data and postoperative outcomes,including operative time,retained common bile duct(CBD)stones,CBD injury,other complications and length of hospital stay,were recorded for comparative analysis.Inter-group differences were statistically assessed by theχ2 test(categorical variables)and Fisher’s exact test(binary variables),with the threshold for statistical significance set at P<0.05.RESULTS:A total of 371 patients were enrolled in the trial(late-adolescent to adult,age range:16-70 years),with 185 assigned to the routine LC group and 186 to the LC+IOC group.The two treatment groups were similar in age,sex,body mass index,duration of symptomology,number and size of gallstones,and clinical symptoms.The two treatment groups also showed no significant differences in the rates of successful LC(98.38%vs97.85%),CBD stone retainment(0.54%vs 0.00%),CBD injury(0.54%vs 0.53%)and other complications(2.16%vs 2.15%),as well as in duration of hospital stay(5.10±1.41 d vs 4.99±1.53 d).However,the LC+IOC treatment group showed significantly longer mean operati
基金the Indian Space Research Organization (ISRO) for providing financial support forcarrying out this work
文摘Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstructure, lap-shear performance and failure mode were investigated. The pin profile was found to significantly influence the hook geometry, which in turn strongly influenced the joint strength and the failure mode. Welds produced in alloy 2014-T4 Alclad sheets by using triangular and threaded taper cylindrical tools exhibited an average lap-shear failure load of 16.5 and 19.5 kN, respectively, while the average failure load for standard riveted joints was only 3.4 kN. Welds produced in alloy 2014-T6 Alclad sheets and in alloy 2014-T4 bare sheets (i.e., no Alclad) were comparatively evaluated with those produced in alloy 2014-T4 Alclad sheets. While the welds made (with threaded taper cylindrical tool) in T6 and T4 conditions showed very similar lap-shear failure loads, the joint efficiency of the welds made in T6 condition (43%) was considerably lower (because of the higher base material strength) than those made in T4 condition (51%). The Alclad layers were found to present no special problems in friction stir lap welding. Welds made with triangular tool in alloy 2014-T4 Alclad and bare sheets showed very similar lap-shear failure loads. The present work provides some useful insights into the use of friction stir welding for joining Al alloys in lap configuration.
基金supported by the National Natural Science Foundation of China(No.51204111)the Natural Science Foundation of Liaoning Province(Nos.2013024004 and 2014024008)+1 种基金the Project of Science and Technology Department of Liaoning Province(No.2013222007)the Aeronautical Science Foundation of China(No.2014ZE54021)
文摘In friction stir welding (FSW), tool geometry plays an important role in joint quality. In order to improve mechanical properties of friction stir lap welding (FSLW)joint, a tool with a reverse-threaded pin was designed in the present study. Using 2024-T4 aluminum alloy as the research object, tools with the full- threaded pin and reverse-threaded pin were used in FSLW. Results showed that, when using the same parameter combination, FSLW joint using the reverse-threaded pin owned bigger effective sheet thick- ness (EST), bigger lap width and better lap shear failure strength. Compared with the full-threaded pin, fracture mode of the FSLW joint changed from shear fracture mode to tensile fracture mode when the reverse-threaded pin was used. Fracture morphologies presented ductile fracture.
文摘The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.