At the present 50 to 100 microseconds are necessary for a liquid crystal to change its state from opacity to clarity; 1.14×10-5 microseconds are however proved to be enough for light to pass through a clarity liq...At the present 50 to 100 microseconds are necessary for a liquid crystal to change its state from opacity to clarity; 1.14×10-5 microseconds are however proved to be enough for light to pass through a clarity liquid crystal device. Rooted from this great difference in time, an optical adder was constructed with parallel through carry lanes (PTCL) composed of liquid crystals. Because all carries in PTCL process in parallel, the carry delay in the ternary optical computer's adder is avoided. Eliminating the carry delay in adder of ternary optical computer by physical means, the PTCL is also applicable for other types of optical adders. Moreover a light diagram of the adder and one PTCL structure are provided.展开更多
The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting la...The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting lane and target lane, a new virtual trajectory planning method for lane changing on curved road was presented, and the calculating formulas for ideal states of vehicle in the inertial coordinate system during a lane changing maneuver were established. Applying the predetermined trajectory, the reference yaw angle and yaw rate for lane changing were generated. On the assumption that the information on yaw rate of vehicle can be measured with on-board sensors and based on the lateral dynamical model of vehicle, the yaw-rate-tracking control law was designed by applying nonsingular terminal sliding mode technology. Based on Lyapunov function method, the finite-time convergence property of the system was obtained from the phase-plane analysis. Simulation results showed that if the curvature difference between starting lane and target lane was not considered, then at the finishing time of lane changing, it was impossible to avoid the deviation of the virtual trajectory panned from the target lane, which increased with the decrease of curvature radius. With the trajectory planning method and yaw rate-tracking control law proposed in this paper and considering the curvature difference between the starting lane and target lane, the desired virtual trajectory for lane changing without deviation was obtained and the expected tracking performance was also verified by the simulation.展开更多
A panoptic driving perception system is an essential part of autonomous driving.A high-precision and real-time perception system can assist the vehicle in making reasonable decisions while driving.We present a panopti...A panoptic driving perception system is an essential part of autonomous driving.A high-precision and real-time perception system can assist the vehicle in making reasonable decisions while driving.We present a panoptic driving perception network(you only look once for panoptic(YOLOP))to perform traffic object detection,drivable area segmentation,and lane detection simultaneously.It is composed of one encoder for feature extraction and three decoders to handle the specific tasks.Our model performs extremely well on the challenging BDD100K dataset,achieving state-of-the-art on all three tasks in terms of accuracy and speed.Besides,we verify the effectiveness of our multi-task learning model for joint training via ablative studies.To our best knowledge,this is the first work that can process these three visual perception tasks simultaneously in real-time on an embedded device Jetson TX2(23 FPS),and maintain excellent accuracy.To facilitate further research,the source codes and pre-trained models are released at https://github.com/hustvl/YOLOP.展开更多
Recently,the development and application of lane line departure warning systems have been in the market.For any of the systems,the key part of lane line tracking,lane line identification,or lane line departure warning...Recently,the development and application of lane line departure warning systems have been in the market.For any of the systems,the key part of lane line tracking,lane line identification,or lane line departure warning is whether it can accurately and quickly detect lane lines.Since 1990 s,they have been studied and implemented for the situations defined by the good viewing conditions and the clear lane markings on road.After then,the accuracy for particular situations,the robustness for a wide range of scenarios,time efficiency and integration into higher-order tasks define visual lane line detection and tracking as a continuing research subject.At present,these kinds of lane marking line detection methods based on machine vision and image processing can be divided into two categories:the traditional image processing and semantic segmentation(includes deep learning)methods.The former mainly involves feature-based and model-based steps,and which can be classified into similarity-and discontinuity-based ones;and the model-based step includes different parametric straight line,curve or pattern models.The semantic segmentation includes different machine learning,neural network and deep learning methods,which is the new trend for the research and application of lane line departure warning systems.This paper describes and analyzes the lane line departure warning systems,image processing algorithms and semantic segmentation methods for lane line detection.展开更多
Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowl...Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous visionbased lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system,and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.展开更多
Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that re...Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.展开更多
A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approa...A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.展开更多
At present, most lane line detection methods are aimed at simple road surface. There is still no good solution for the situation that the lane line contains arrow, text and other signs. The edge left by markers such a...At present, most lane line detection methods are aimed at simple road surface. There is still no good solution for the situation that the lane line contains arrow, text and other signs. The edge left by markers such as arrow and text will interfere with the detection of lane lines. In view of the situation of arrow mark and text mark interference between lane lines, the paper proposes a new processing algorithm. The algorithm consists of four parts, Gaussian blur, image graying processing, DLD-threshold (Dark-Light-Dark-threshold) algorithm, correlation filter edge extraction and Hough transform. Among them, the DLD-threshold algorithm and related filters are mainly used to remove the identification interference between lane lines. The test results on the Caltech Lanes dataset are given at the end of the article. The result of verification of this algorithm showed a max recognition rate of 97.2%.展开更多
基金supported by the Doctorate Foundation of Northwestern Polytechnical Universitythe Young Scholar Training Foundation of Northwestern Polytechnical University211 Key Laboratory Fund of Shanghai University.
文摘At the present 50 to 100 microseconds are necessary for a liquid crystal to change its state from opacity to clarity; 1.14×10-5 microseconds are however proved to be enough for light to pass through a clarity liquid crystal device. Rooted from this great difference in time, an optical adder was constructed with parallel through carry lanes (PTCL) composed of liquid crystals. Because all carries in PTCL process in parallel, the carry delay in the ternary optical computer's adder is avoided. Eliminating the carry delay in adder of ternary optical computer by physical means, the PTCL is also applicable for other types of optical adders. Moreover a light diagram of the adder and one PTCL structure are provided.
基金supported by the National Natural Science Foundation of China (Grant No. 10772152)the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010FM008)
文摘The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting lane and target lane, a new virtual trajectory planning method for lane changing on curved road was presented, and the calculating formulas for ideal states of vehicle in the inertial coordinate system during a lane changing maneuver were established. Applying the predetermined trajectory, the reference yaw angle and yaw rate for lane changing were generated. On the assumption that the information on yaw rate of vehicle can be measured with on-board sensors and based on the lateral dynamical model of vehicle, the yaw-rate-tracking control law was designed by applying nonsingular terminal sliding mode technology. Based on Lyapunov function method, the finite-time convergence property of the system was obtained from the phase-plane analysis. Simulation results showed that if the curvature difference between starting lane and target lane was not considered, then at the finishing time of lane changing, it was impossible to avoid the deviation of the virtual trajectory panned from the target lane, which increased with the decrease of curvature radius. With the trajectory planning method and yaw rate-tracking control law proposed in this paper and considering the curvature difference between the starting lane and target lane, the desired virtual trajectory for lane changing without deviation was obtained and the expected tracking performance was also verified by the simulation.
基金supported by National Natural Science Foundation of China(Nos.61876212 and 1733007)Zhejiang Laboratory,China(No.2019NB0AB02)Hubei Province College Students Innovation and Entrepreneurship Training Program,China(No.S202010487058).
文摘A panoptic driving perception system is an essential part of autonomous driving.A high-precision and real-time perception system can assist the vehicle in making reasonable decisions while driving.We present a panoptic driving perception network(you only look once for panoptic(YOLOP))to perform traffic object detection,drivable area segmentation,and lane detection simultaneously.It is composed of one encoder for feature extraction and three decoders to handle the specific tasks.Our model performs extremely well on the challenging BDD100K dataset,achieving state-of-the-art on all three tasks in terms of accuracy and speed.Besides,we verify the effectiveness of our multi-task learning model for joint training via ablative studies.To our best knowledge,this is the first work that can process these three visual perception tasks simultaneously in real-time on an embedded device Jetson TX2(23 FPS),and maintain excellent accuracy.To facilitate further research,the source codes and pre-trained models are released at https://github.com/hustvl/YOLOP.
基金financially supported by the National Natural Science Foundation of China(grant No.61170147)the Scientific and Technological Project of Shaanxi Province in China(grant No.2019GY-038)。
文摘Recently,the development and application of lane line departure warning systems have been in the market.For any of the systems,the key part of lane line tracking,lane line identification,or lane line departure warning is whether it can accurately and quickly detect lane lines.Since 1990 s,they have been studied and implemented for the situations defined by the good viewing conditions and the clear lane markings on road.After then,the accuracy for particular situations,the robustness for a wide range of scenarios,time efficiency and integration into higher-order tasks define visual lane line detection and tracking as a continuing research subject.At present,these kinds of lane marking line detection methods based on machine vision and image processing can be divided into two categories:the traditional image processing and semantic segmentation(includes deep learning)methods.The former mainly involves feature-based and model-based steps,and which can be classified into similarity-and discontinuity-based ones;and the model-based step includes different parametric straight line,curve or pattern models.The semantic segmentation includes different machine learning,neural network and deep learning methods,which is the new trend for the research and application of lane line departure warning systems.This paper describes and analyzes the lane line departure warning systems,image processing algorithms and semantic segmentation methods for lane line detection.
文摘Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous visionbased lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system,and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.
基金Project(90820302) supported by the National Natural Science Foundation of China
文摘A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.
文摘At present, most lane line detection methods are aimed at simple road surface. There is still no good solution for the situation that the lane line contains arrow, text and other signs. The edge left by markers such as arrow and text will interfere with the detection of lane lines. In view of the situation of arrow mark and text mark interference between lane lines, the paper proposes a new processing algorithm. The algorithm consists of four parts, Gaussian blur, image graying processing, DLD-threshold (Dark-Light-Dark-threshold) algorithm, correlation filter edge extraction and Hough transform. Among them, the DLD-threshold algorithm and related filters are mainly used to remove the identification interference between lane lines. The test results on the Caltech Lanes dataset are given at the end of the article. The result of verification of this algorithm showed a max recognition rate of 97.2%.