以登陆内陆后维持时间长、暴雨增幅的热带气旋"碧利斯"(0604)为研究对象,利用"CMA-STI"热带气旋最佳路径数据集、NCEP/NCAR再分析资料及地面加密观测资料,讨论了西南季风与登陆台风耦合的暴雨增幅,分析了台风涡旋...以登陆内陆后维持时间长、暴雨增幅的热带气旋"碧利斯"(0604)为研究对象,利用"CMA-STI"热带气旋最佳路径数据集、NCEP/NCAR再分析资料及地面加密观测资料,讨论了西南季风与登陆台风耦合的暴雨增幅,分析了台风涡旋周围的水汽收支特征,发现净西风、净南风输送为暴雨提供了充足的水汽,在"碧利斯"登陆大陆减弱西行的过程中,西南季风对登陆台风的维持和暴雨增幅有重要影响。利用WRF(weather research and forecasting)模式模拟"碧利斯"登陆后的降水表明,该模式能够较好地模拟降水强度和暴雨落区,模拟路径与台风实际路径走向大体一致,但存在一定偏差;季风涌爆发时,台风中心南侧降水出现明显增幅。敏感性试验结果表明,降水强度对水汽输送大小较敏感,水汽输送减弱致使降水强度明显减弱,可见西南季风的水汽输送对暴雨的影响至关重要。展开更多
利用区域自动站资料及NCEP再分析资料,对0915号"巨爵"、1006号"狮子山"和1011号"凡亚比"登陆后引发阳江特大暴雨的水汽输送特征进行了对比分析,并应用HYSPLIT-4轨迹模式验证了水汽来源。结果表明:1)它们...利用区域自动站资料及NCEP再分析资料,对0915号"巨爵"、1006号"狮子山"和1011号"凡亚比"登陆后引发阳江特大暴雨的水汽输送特征进行了对比分析,并应用HYSPLIT-4轨迹模式验证了水汽来源。结果表明:1)它们引发阳江特大暴雨期间,低纬西南季风活跃。"巨爵"影响时由来自印度洋与副高西侧偏南气流汇合产生强降雨,水汽来源于中南半岛和孟加拉湾;"狮子山"影响时西南水汽输入明显减弱,主要由偏东气流携南海近海水汽的注入引发了局地短而强的降雨,水汽来源于南海近海;"凡亚比"登陆后,北部湾超低空急流的暴发,有利于强西南气流携带水汽经粤西往"凡亚比"输送,引发粤西地区特大暴雨,水汽主要来源于北部湾。2)强降雨都是始于阳江特大暴雨区纬向风转东风或经向风转南风阶段。"巨爵"、"凡亚比"引发阳江强降雨前后,850 h Pa南海、北部湾经向风南风明显增大,加强了海上水汽的向北输送。"狮子山"影响时则是由于近海短时间转东风,水汽由东输入并加强了辐合。3)水汽输送以"巨爵"最强、"狮子山"最弱,水汽辐合层次"巨爵"和"狮子山"较"凡亚比"要浅薄。它们的低层水汽辐合中心与特大暴雨区有很好的对应关系。展开更多
A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon tro...A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon trough, which was closely associated with the intensification of the low-level southeasterly flow and the northward transport of heat and momentum in the periphery of the typhoon low. A numerical simulation of this event is performed using the nonhydrostatic mesoscale model MM5 with two-way interactive and triply-nested grids, and the structure of the inverted typhoon trough is studied. Furthermore, the formation and development mechanism of the inverted typhoon trough and a mesoscale vortex are discussed through a vorticity budget analysis. The results show that the heavy rainfall was induced by the strong convergence between the strong and weak winds within the inverted typhoon trough. Dynamic effects of the low-level jet and the diabatic heating of precipitation played an important role in the development of the inverted typhoon trough and the formation of the mesoscale vortex. The vorticity budget analysis suggests that the divergence term in the low troposphere, the horizontal advection term, and the convection term in the middle troposphere were main contributors to positive vorticity. Nonetheless, at the same pressure level, the effect of the divergence term and that of the adveetion term were opposite to each other. In the middle troposphere, the vertical transport term made a positive contribution while the tilting term made a negative contribution, and the total vorticity tendency was the net result of their counteractions. It is found that the change tendency of the relative vorticity was not uniform horizontally. A strong positive vorticity tendency occurred in the southeast of the mesoscale vortex, which is why the heavy rainfall was concentrated there. The increase of positive vorticity in the low (upper) troposphere was caused by horizontal convergence (upward transport of vorticit展开更多
文摘以登陆内陆后维持时间长、暴雨增幅的热带气旋"碧利斯"(0604)为研究对象,利用"CMA-STI"热带气旋最佳路径数据集、NCEP/NCAR再分析资料及地面加密观测资料,讨论了西南季风与登陆台风耦合的暴雨增幅,分析了台风涡旋周围的水汽收支特征,发现净西风、净南风输送为暴雨提供了充足的水汽,在"碧利斯"登陆大陆减弱西行的过程中,西南季风对登陆台风的维持和暴雨增幅有重要影响。利用WRF(weather research and forecasting)模式模拟"碧利斯"登陆后的降水表明,该模式能够较好地模拟降水强度和暴雨落区,模拟路径与台风实际路径走向大体一致,但存在一定偏差;季风涌爆发时,台风中心南侧降水出现明显增幅。敏感性试验结果表明,降水强度对水汽输送大小较敏感,水汽输送减弱致使降水强度明显减弱,可见西南季风的水汽输送对暴雨的影响至关重要。
文摘利用区域自动站资料及NCEP再分析资料,对0915号"巨爵"、1006号"狮子山"和1011号"凡亚比"登陆后引发阳江特大暴雨的水汽输送特征进行了对比分析,并应用HYSPLIT-4轨迹模式验证了水汽来源。结果表明:1)它们引发阳江特大暴雨期间,低纬西南季风活跃。"巨爵"影响时由来自印度洋与副高西侧偏南气流汇合产生强降雨,水汽来源于中南半岛和孟加拉湾;"狮子山"影响时西南水汽输入明显减弱,主要由偏东气流携南海近海水汽的注入引发了局地短而强的降雨,水汽来源于南海近海;"凡亚比"登陆后,北部湾超低空急流的暴发,有利于强西南气流携带水汽经粤西往"凡亚比"输送,引发粤西地区特大暴雨,水汽主要来源于北部湾。2)强降雨都是始于阳江特大暴雨区纬向风转东风或经向风转南风阶段。"巨爵"、"凡亚比"引发阳江强降雨前后,850 h Pa南海、北部湾经向风南风明显增大,加强了海上水汽的向北输送。"狮子山"影响时则是由于近海短时间转东风,水汽由东输入并加强了辐合。3)水汽输送以"巨爵"最强、"狮子山"最弱,水汽辐合层次"巨爵"和"狮子山"较"凡亚比"要浅薄。它们的低层水汽辐合中心与特大暴雨区有很好的对应关系。
基金Supported by Wuhan Institute of Heavy Rain, China Meteorological Administration, under Grant No. IHR2008K03the Scientific Research Project of the Shandong Provincial Meteorological Bureau under Grant No. 2006sdqxz18
文摘A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon trough, which was closely associated with the intensification of the low-level southeasterly flow and the northward transport of heat and momentum in the periphery of the typhoon low. A numerical simulation of this event is performed using the nonhydrostatic mesoscale model MM5 with two-way interactive and triply-nested grids, and the structure of the inverted typhoon trough is studied. Furthermore, the formation and development mechanism of the inverted typhoon trough and a mesoscale vortex are discussed through a vorticity budget analysis. The results show that the heavy rainfall was induced by the strong convergence between the strong and weak winds within the inverted typhoon trough. Dynamic effects of the low-level jet and the diabatic heating of precipitation played an important role in the development of the inverted typhoon trough and the formation of the mesoscale vortex. The vorticity budget analysis suggests that the divergence term in the low troposphere, the horizontal advection term, and the convection term in the middle troposphere were main contributors to positive vorticity. Nonetheless, at the same pressure level, the effect of the divergence term and that of the adveetion term were opposite to each other. In the middle troposphere, the vertical transport term made a positive contribution while the tilting term made a negative contribution, and the total vorticity tendency was the net result of their counteractions. It is found that the change tendency of the relative vorticity was not uniform horizontally. A strong positive vorticity tendency occurred in the southeast of the mesoscale vortex, which is why the heavy rainfall was concentrated there. The increase of positive vorticity in the low (upper) troposphere was caused by horizontal convergence (upward transport of vorticit