Multi-scale lamellar structure significantly improves toughness of Ti_(2)AlNb based alloys,which are inher-ently brittle intermetallics,without compromising their strength.This structure was achieved through-B2-transu...Multi-scale lamellar structure significantly improves toughness of Ti_(2)AlNb based alloys,which are inher-ently brittle intermetallics,without compromising their strength.This structure was achieved through-B2-transus-forging(TBTF)combined with O+B2 two-phase region heat treatments.Various types of multi-scale lamellar structures were obtained by controlling the cooling rate after TBTF.These variations were mainly attributed to differences in the distribution,content,and size of the thick lamellar O phase and the size and crystallographic orientation of B2 grain.By analyzing the microstructural characteristics and crystallographic orientation near the crack propagation path,it was found that the crack propaga-tion resistance of thick lamellae,sub grain and grain boundaries(GBs)O phase increased sequentially,accompanied by more tortuous crack propagation path.Moreover,B2 grains with high misorientation significantly deflected the crack propagation by cleavage ridges between adjoining cleavage planes.Addi-tionally,the development of numerous secondary cleavage ridges,resulting from the transition through varying secondary cleavage planes in distinct sub B2 grains,further hindered the quick propagation of cracks.It was clarified that the cleavage planes were dominantly belonging to{110}.These findings pro-vided valuable guidance for the design of damage tolerance strategies for Ti_(2)AlNb-based intermetallics.展开更多
Microphase separation and lamellar structure of segmented polyether- and polyester-polyurethanes have been investigated by means of transmission electron microscopy with the ruthenium tetroxide staining technique. The...Microphase separation and lamellar structure of segmented polyether- and polyester-polyurethanes have been investigated by means of transmission electron microscopy with the ruthenium tetroxide staining technique. The results show that the RuO_4 staining technique is simpler and may give better image contrast than other staining methods for this polymer. Microphase separation and lamellar structure of segmented polyether-and polyester-polyurethanes were directly observed and discussed.展开更多
Poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends were prepared by solvent mixing to avoid transesterification during high temperature blending. The influences of compositions on the thermal behavior,...Poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends were prepared by solvent mixing to avoid transesterification during high temperature blending. The influences of compositions on the thermal behavior, crystallization morphology and structure of the blends were studied. FTIR results indicated that there was no CO0 linking to two phenyl groups on each side chain and DSC results supported no transesterification reaction. DSC curves showed that Tc and Tmc increased to maximum range when PC contents were between 7 wt%-15 wt%, however, Tm decreased constantly with the increase of PC contents. It was observed from POM that PTT spherulitic morphology and crystallization kinetics were obviously influenced by the change of PC contents. Structural evolutions during cooling were investigated by SAXS which showed Lc of PTT remained a constant with different PC contents and also fixed during crystallization, nevertheless, it revealed a maximum value of Lnc for sample PTT93. It was concluded that PC chains could be permeated into not only amorphous crystallite structure but also amorphous lamellae structure and 7 wt% PC content was supposed to be the "proper" penetration amount into PTT lamellae structure which led to a maximum capacity of amorphous lamellar layer. Fringedmicelle crystal model was adopted to illustrate semi-crystalline physical structures of the blend in two kinds of component aggregation states.展开更多
In a semicrystalline aggregate of flexible chain polymers, a large amount of the adjacent regularly-folded tiny lamellae coexists with the amorphous phase whose chains have only random spatial arrangement. This ’crys...In a semicrystalline aggregate of flexible chain polymers, a large amount of the adjacent regularly-folded tiny lamellae coexists with the amorphous phase whose chains have only random spatial arrangement. This ’crystalline-noncrystalline’ two-phase model has been widely accepted and used to describe the structure and properties of polymers in condensed state. The crystalline morphology of PE prepared by various methods have展开更多
基金supported by the National Natural Science Foundation of China(No.52275380).
文摘Multi-scale lamellar structure significantly improves toughness of Ti_(2)AlNb based alloys,which are inher-ently brittle intermetallics,without compromising their strength.This structure was achieved through-B2-transus-forging(TBTF)combined with O+B2 two-phase region heat treatments.Various types of multi-scale lamellar structures were obtained by controlling the cooling rate after TBTF.These variations were mainly attributed to differences in the distribution,content,and size of the thick lamellar O phase and the size and crystallographic orientation of B2 grain.By analyzing the microstructural characteristics and crystallographic orientation near the crack propagation path,it was found that the crack propaga-tion resistance of thick lamellae,sub grain and grain boundaries(GBs)O phase increased sequentially,accompanied by more tortuous crack propagation path.Moreover,B2 grains with high misorientation significantly deflected the crack propagation by cleavage ridges between adjoining cleavage planes.Addi-tionally,the development of numerous secondary cleavage ridges,resulting from the transition through varying secondary cleavage planes in distinct sub B2 grains,further hindered the quick propagation of cracks.It was clarified that the cleavage planes were dominantly belonging to{110}.These findings pro-vided valuable guidance for the design of damage tolerance strategies for Ti_(2)AlNb-based intermetallics.
文摘Microphase separation and lamellar structure of segmented polyether- and polyester-polyurethanes have been investigated by means of transmission electron microscopy with the ruthenium tetroxide staining technique. The results show that the RuO_4 staining technique is simpler and may give better image contrast than other staining methods for this polymer. Microphase separation and lamellar structure of segmented polyether-and polyester-polyurethanes were directly observed and discussed.
基金financially supported by the Project of Heilongjiang Province Education Department(No.12523013)the Fundamental Research Funds for the Central Universities(No.DL13CB01)the National Natural Science Foundation of China(No.21404022)
文摘Poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends were prepared by solvent mixing to avoid transesterification during high temperature blending. The influences of compositions on the thermal behavior, crystallization morphology and structure of the blends were studied. FTIR results indicated that there was no CO0 linking to two phenyl groups on each side chain and DSC results supported no transesterification reaction. DSC curves showed that Tc and Tmc increased to maximum range when PC contents were between 7 wt%-15 wt%, however, Tm decreased constantly with the increase of PC contents. It was observed from POM that PTT spherulitic morphology and crystallization kinetics were obviously influenced by the change of PC contents. Structural evolutions during cooling were investigated by SAXS which showed Lc of PTT remained a constant with different PC contents and also fixed during crystallization, nevertheless, it revealed a maximum value of Lnc for sample PTT93. It was concluded that PC chains could be permeated into not only amorphous crystallite structure but also amorphous lamellae structure and 7 wt% PC content was supposed to be the "proper" penetration amount into PTT lamellae structure which led to a maximum capacity of amorphous lamellar layer. Fringedmicelle crystal model was adopted to illustrate semi-crystalline physical structures of the blend in two kinds of component aggregation states.
基金Project supported by the National Natural Science Foundation of China.
文摘In a semicrystalline aggregate of flexible chain polymers, a large amount of the adjacent regularly-folded tiny lamellae coexists with the amorphous phase whose chains have only random spatial arrangement. This ’crystalline-noncrystalline’ two-phase model has been widely accepted and used to describe the structure and properties of polymers in condensed state. The crystalline morphology of PE prepared by various methods have