A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure inte...A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure interaction with an H-O type of non-staggered gridsincorporating the domain decomposition method (DDM), which could save the computational CPU time dueto re-meshing. The computational domain was divided into nine sub-domains including one ALEsub-domain and eight Eulerian sub-domains. The convection term and dissipation term in the N-Sequations were discretized using the third-order upwind compact scheme and the fourth-order centralcompact scheme, respectively. The motion of the cylinder was modeled by a spring-damper-mass systemand solved using the Runge-Kutta method. By simulating the non-linear fluid-structure interaction,the ''lock-in'', ''beating'' and ''phase switch'' phenomena were successfully captured, and the resultsagree with experimental data Furthermore, the vortex structure, the unsteady lift and drag on thecylinder, and the cylinder displacement at various natural frequency of the cylinder for Re = 200were discussed in detail, by which a jump transition of the wake structure was captured.展开更多
文摘A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure interaction with an H-O type of non-staggered gridsincorporating the domain decomposition method (DDM), which could save the computational CPU time dueto re-meshing. The computational domain was divided into nine sub-domains including one ALEsub-domain and eight Eulerian sub-domains. The convection term and dissipation term in the N-Sequations were discretized using the third-order upwind compact scheme and the fourth-order centralcompact scheme, respectively. The motion of the cylinder was modeled by a spring-damper-mass systemand solved using the Runge-Kutta method. By simulating the non-linear fluid-structure interaction,the ''lock-in'', ''beating'' and ''phase switch'' phenomena were successfully captured, and the resultsagree with experimental data Furthermore, the vortex structure, the unsteady lift and drag on thecylinder, and the cylinder displacement at various natural frequency of the cylinder for Re = 200were discussed in detail, by which a jump transition of the wake structure was captured.