期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
l_(p)-范数约束下MKL-OC-ELM的装备故障检测 被引量:1
1
作者 刘星 赵建印 +1 位作者 朱敏 张伟 《控制与决策》 EI CSCD 北大核心 2021年第10期2379-2388,共10页
针对列装时间短的现役装备故障样本匮乏、现有算法故障检测准确率较低的问题,将多核学习(multiple kernel learning, MKL)与一类超限学习机(OC-ELM)相结合,提出l_(p)-范数约束下多核学习一类超限学习机(l_(p)-MKOCELM)的检测模型.在l_(... 针对列装时间短的现役装备故障样本匮乏、现有算法故障检测准确率较低的问题,将多核学习(multiple kernel learning, MKL)与一类超限学习机(OC-ELM)相结合,提出l_(p)-范数约束下多核学习一类超限学习机(l_(p)-MKOCELM)的检测模型.在l_(p)-范数约束下,定义了将MKL与OC-ELM相结合的数学优化形式,推导出基核组合权重与Lagrange乘子的更新方式;为方便故障检测的实施,基于l_(p)-MKOCELM定义了统计检验量与检测阈值;通过实验验证了不同范数的约束形式的近似等价性.将所提出方法应用于常用的UCI数据集和某型装备的测试数据,实验结果表明,相比于传统的SVDD、PCA、OC-SVM、OC-KELM等方法,所提出方法在平衡漏警、虚警的同时,能够显著提升检测精度. 展开更多
关键词 超限学习机 多核学习 一类分类 故障检测 l_(p)-范数约束
原文传递
基于Optuna框架的L_(p)范数约束下多核支持向量机在违约风险预测中的应用
2
作者 郑怡昕 王重仁 《现代电子技术》 北大核心 2024年第6期147-153,共7页
针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学... 针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学习引入多核混合核函数组合;同时采用Optuna优化框架对犯错成本、核函数的参数和权重实现了自动化的调优过程;还在核函数权重上引入L_(p)范数约束,以提高模型对噪声和异常数据的鲁棒性。最后,对4种常用的基础核函数组合的L_(p)-Optuna-SVM进行探讨,并与单核支持向量机以及K邻近法、逻辑回归、高斯贝叶斯进行对比。结果表明,在给定数据集上,L_(p)-Optuna-SVM在违约数据上的g-mean和AUC均高于其他算法,并且在加了不同方差的噪声数据集上,该算法整体依旧保持较好的鲁棒性。 展开更多
关键词 多核支持向量机 Optuna优化框架 l_(p)范数约束 多核学习 不平衡数据集 违约风险预测
下载PDF
快速双非凸回归算法及其电力数据预测应用 被引量:2
3
作者 王锋华 成敬周 文凡 《智能系统学报》 CSCD 北大核心 2018年第4期665-672,共8页
为适应产能输出、运营效益等电力数据预测应用,文中提出一种快速双非凸回归(double nonconvex regression,DNR)预测算法。首先,将经典稀疏编码分类技术解释为预测回归模型,并划分为训练阶段和测试阶段,使之适合标量预测应用;其次,针对经... 为适应产能输出、运营效益等电力数据预测应用,文中提出一种快速双非凸回归(double nonconvex regression,DNR)预测算法。首先,将经典稀疏编码分类技术解释为预测回归模型,并划分为训练阶段和测试阶段,使之适合标量预测应用;其次,针对经典Lasso模型存在的稀疏性不足以及噪声拟合单一问题,该算法通过lp范数约束逼近原始稀疏编码问题的误差重构项和系数正则项,具有更为灵活的模型形式和应用范围。最后,通过交替方向乘子框架实现了重构系数的优化升级策略。为确保ADMM优化子问题具有快速解,提出一种改进的迭代阈值规则用于更新非凸lp约束项,解决了原始算法陷入的局部最优问题。在电力企业实际运行产出和运营指标数据上的实验结果表明,DNR在预测效果和预测效率上均优于经典的支持向量机、BP神经网络以及非凸约束预测方法。 展开更多
关键词 交替方向乘子法 电力数据预测 l_p范数约束 迭代阈值方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部