压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元...压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元是成块出现的.受YIN Peng-hang,LOU Yi-fei,HE Qi等提出的l_1-2范数最小化方法的启发,将基于l_1-l_2范数的稀疏重构算法推广到块稀疏模型,证明了块稀疏模型下l_1-l_2范数的相关性质,建立了基于l_1-l_2范数的块稀疏信号精确重构的充分条件,并通过DCA(difference of convex functions algorithm)和ADMM(alternating direction method of multipliers)给出了求解块稀疏模型下l_1-l_2范数的迭代方法.数值实验表明,基于l_1-l_2范数的块稀疏重构算法比其他块稀疏重构算法具有更高的重构成功率.展开更多
Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvo...Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvolution. Experiments show that the details of the image destroy the structure of the kernel, especially when the blur kernel is large. So we extract the image structure with salient edges by the method based on RTV. In addition, the traditional method for motion blur kernel estimation based on sparse priors is conducive to gain a sparse blur kernel. But these priors do not ensure the continuity of blur kernel and sometimes induce noisy estimated results. Therefore we propose the kernel refinement method based on L0 to overcome the above shortcomings. In terms of non-blind deconvolution we adopt the L1/L2 regularization term. Compared with the traditional method, the method based on L1/L2 norm has better adaptability to image structure, and the constructed energy functional can better describe the sharp image. For this model, an effective algorithm is presented based on alternating minimization algorithm.展开更多
文摘压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元是成块出现的.受YIN Peng-hang,LOU Yi-fei,HE Qi等提出的l_1-2范数最小化方法的启发,将基于l_1-l_2范数的稀疏重构算法推广到块稀疏模型,证明了块稀疏模型下l_1-l_2范数的相关性质,建立了基于l_1-l_2范数的块稀疏信号精确重构的充分条件,并通过DCA(difference of convex functions algorithm)和ADMM(alternating direction method of multipliers)给出了求解块稀疏模型下l_1-l_2范数的迭代方法.数值实验表明,基于l_1-l_2范数的块稀疏重构算法比其他块稀疏重构算法具有更高的重构成功率.
基金Partially Supported by National Natural Science Foundation of China(No.61173102)
文摘Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvolution. Experiments show that the details of the image destroy the structure of the kernel, especially when the blur kernel is large. So we extract the image structure with salient edges by the method based on RTV. In addition, the traditional method for motion blur kernel estimation based on sparse priors is conducive to gain a sparse blur kernel. But these priors do not ensure the continuity of blur kernel and sometimes induce noisy estimated results. Therefore we propose the kernel refinement method based on L0 to overcome the above shortcomings. In terms of non-blind deconvolution we adopt the L1/L2 regularization term. Compared with the traditional method, the method based on L1/L2 norm has better adaptability to image structure, and the constructed energy functional can better describe the sharp image. For this model, an effective algorithm is presented based on alternating minimization algorithm.