期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
鲁棒的半监督多标签特征选择方法 被引量:6
1
作者 严菲 王晓栋 《智能系统学报》 CSCD 北大核心 2019年第4期812-819,共8页
针对现有的半监督多标签特征选择方法利用l2-范数建立谱图易受到噪声影响的问题,文中提出一种鲁棒的半监督多标签特征选择方法,利用全局线性回归函数建立多标签特征选择模型,结合l1图获取局部描述信息提高模型准确度,引入l2,1约束提升... 针对现有的半监督多标签特征选择方法利用l2-范数建立谱图易受到噪声影响的问题,文中提出一种鲁棒的半监督多标签特征选择方法,利用全局线性回归函数建立多标签特征选择模型,结合l1图获取局部描述信息提高模型准确度,引入l2,1约束提升特征之间可区分度和回归分析的稳定性,避免噪声干扰。在4种开源数据集上借助多种性能评价标准验证所提出方法,结果表明:本文方法能有效提高分类模型的准确性和对外界噪声的抗干扰性。 展开更多
关键词 特征选择 半监督学习 多标签学习 l1范式 线性回归 l2 1范数 鲁棒 分类 聚类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部