The Yellow Sea Warm Current (YSWC) penetrates northward along the Yellow Sea Trough, and brings warm and saline water towards the Bohai Sea. The YSWC becomes much less intrusive in summer and is limited mostly in th...The Yellow Sea Warm Current (YSWC) penetrates northward along the Yellow Sea Trough, and brings warm and saline water towards the Bohai Sea. The YSWC becomes much less intrusive in summer and is limited mostly in the southern trough, contrasting with a deep winter penetration well into the trough. The seasonal variability of the YSWC has prompted a debate regarding which controls the YSWC and its seasonal variability. In this article, the annual mean and seasonal variability of the YSWC was examined by using a 3-D ocean model together with several experiments. The results show that in the annual mean the YSWC is a compensating current firstly for the southward Korea Coastal Current (KCC), which is mainly caused by the Kuroshio Current (KC). The local wind-stress forcing plays an important but secondary role. However, the local monsoonal forcing plays a prominent role in modulating the seasonal variability. A deep northwestward intrusion of the YSWC in winter, for instance, is mainly due to a robustly developed China Coastal Current (CCC) which draws water along the Yellow Sea trough to feed a southward flow all the way from the Bohai Sea to the Taiwan Strait.展开更多
A morphology-based edge detection method has been used to study sea surface temperature (SST) fronts in the Taiwan Strait and its adjacent area. The method is based on mathematical morphology with multi-dimensional an...A morphology-based edge detection method has been used to study sea surface temperature (SST) fronts in the Taiwan Strait and its adjacent area. The method is based on mathematical morphology with multi-dimensional and multi-structural elements. Using six years’ SST data from September 2002 to August 2008, we distinguished the large SST front like Kuroshio Front as well as the smaller ones: namely Taiwan Bank Front, Zhe-Min Coastal Front and Zhang-Yun Ridge Front. The seasonal and monthly variations of these fronts were also studied. Generally, the SST fronts are stronger in winter but weaker in summer. And the fronts are at their active stage during the period from January to May but at their declining stage during the period from July to October.展开更多
The 0.5°× 0.5° grid resolution distribution of lightning density in China and its circumjacent regions have been analyzed by using the satellite-borne OTD (Apr 1995-Mar 2000) and LIS (Dec 1997-Mar 2003)...The 0.5°× 0.5° grid resolution distribution of lightning density in China and its circumjacent regions have been analyzed by using the satellite-borne OTD (Apr 1995-Mar 2000) and LIS (Dec 1997-Mar 2003) databases. It is shown that: (i) Firstly, the variability of the lightning density (LD) is particularly pronounced over the different subareas, 9 times greater over the south than the north side of Himalayas Mountains, 2.5 times greater over the eastern than the western area of China. While the maximum and minimum LD are respectively 31.4fl/km2/a (in Guangzhou region) and less than 0.2fl/km2/a (in the desert of western China). Secondly, the LD of China's continent regularly varies with latitude and distance off coast, which is consistent with annual mean precipitation in varying trend. In conclusion, the Qinghai-Tibet Plateau, the China's three-step staircase topography and the latitude are three important factors affecting macro-scale characteristics of the LD distribution, (ii) The regional differences in LD distribution are closely related to the mesoscale orographic forcing. In the eastern humid regions of China, the high LD belts often appear along the mesoscale mountains (with south-north or northeast-southwest direction, 500-1500 m ASL) and hills, while the low LD belts often appear on the plain and basin (valley) between the mountains. But in the western cold and arid regions of China, the relatively high LD belts mostly appear on the Qinghai Lake area of the southern side of Qilian Mountain, Yili River valley, the basin between Tanggula Mountains and Nyainqentanglha. On the coastal land, the high LD centers appear in regions where mountain and hill and large cities are located. This seems to be related to the interaction between the sea-land breeze and mountain-valley wind or city heat island effect, (iii) The China Sea is one of the relatively high LD zones on global oceans. It is very interesting that a high LD belt is located along the Kuroshio area. It is a new fact that the high temperature and hi展开更多
The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean curren...The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.展开更多
A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simu...A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.展开更多
Core 255 from the southern Okinawa Trough was selected to monitor the shift of the Kuroshio axis over the last 20 000 years. During the last glacial maximum the Kuroshio axis had ever shifted outside the Okinawa Troug...Core 255 from the southern Okinawa Trough was selected to monitor the shift of the Kuroshio axis over the last 20 000 years. During the last glacial maximum the Kuroshio axis had ever shifted outside the Okinawa Trough. It entered the Okinawa Trough again at about 6 500 a BP, leading to abrupt increase of sedimentation rate, distinctly coarser sediment and remarkably increased abundance of foraminiferal indicators of the Kuroshio in the core. But, during about 4 000-3 000 a BP the abundance of the Kuroshio indicator Pulleniatina obliquiloculata sharply decreased again, indicating that the Kuroshio axis had ever shifted easterly for a short period or the Kuroshio was weakened and that moment.展开更多
基金Project supported by the National Basic Research Program of China (973 programs, Grant Nos.2005CB422303, 2007CB411804)the National Natural Science Foundation of China (Grant No. 40706006)+1 种基金the Key Project of International Science and Technology Cooperation of China (Grant No.2006DFB21250)the 111 Project (Grant No.B07036).
文摘The Yellow Sea Warm Current (YSWC) penetrates northward along the Yellow Sea Trough, and brings warm and saline water towards the Bohai Sea. The YSWC becomes much less intrusive in summer and is limited mostly in the southern trough, contrasting with a deep winter penetration well into the trough. The seasonal variability of the YSWC has prompted a debate regarding which controls the YSWC and its seasonal variability. In this article, the annual mean and seasonal variability of the YSWC was examined by using a 3-D ocean model together with several experiments. The results show that in the annual mean the YSWC is a compensating current firstly for the southward Korea Coastal Current (KCC), which is mainly caused by the Kuroshio Current (KC). The local wind-stress forcing plays an important but secondary role. However, the local monsoonal forcing plays a prominent role in modulating the seasonal variability. A deep northwestward intrusion of the YSWC in winter, for instance, is mainly due to a robustly developed China Coastal Current (CCC) which draws water along the Yellow Sea trough to feed a southward flow all the way from the Bohai Sea to the Taiwan Strait.
基金supported by National Basic Research Program of China (Grant Nos. 2007CB411803 and 2009CB421208)National Natural Science Foundation of China (Grant Nos. 40576015, 40821063 and 40810069004)
文摘A morphology-based edge detection method has been used to study sea surface temperature (SST) fronts in the Taiwan Strait and its adjacent area. The method is based on mathematical morphology with multi-dimensional and multi-structural elements. Using six years’ SST data from September 2002 to August 2008, we distinguished the large SST front like Kuroshio Front as well as the smaller ones: namely Taiwan Bank Front, Zhe-Min Coastal Front and Zhang-Yun Ridge Front. The seasonal and monthly variations of these fronts were also studied. Generally, the SST fronts are stronger in winter but weaker in summer. And the fronts are at their active stage during the period from January to May but at their declining stage during the period from July to October.
基金supported by the National Natural Science Foundation of China(Gant No.4 0205002)the Chin ese Academy of Sciences(Grant No.KZCX2-201).
文摘The 0.5°× 0.5° grid resolution distribution of lightning density in China and its circumjacent regions have been analyzed by using the satellite-borne OTD (Apr 1995-Mar 2000) and LIS (Dec 1997-Mar 2003) databases. It is shown that: (i) Firstly, the variability of the lightning density (LD) is particularly pronounced over the different subareas, 9 times greater over the south than the north side of Himalayas Mountains, 2.5 times greater over the eastern than the western area of China. While the maximum and minimum LD are respectively 31.4fl/km2/a (in Guangzhou region) and less than 0.2fl/km2/a (in the desert of western China). Secondly, the LD of China's continent regularly varies with latitude and distance off coast, which is consistent with annual mean precipitation in varying trend. In conclusion, the Qinghai-Tibet Plateau, the China's three-step staircase topography and the latitude are three important factors affecting macro-scale characteristics of the LD distribution, (ii) The regional differences in LD distribution are closely related to the mesoscale orographic forcing. In the eastern humid regions of China, the high LD belts often appear along the mesoscale mountains (with south-north or northeast-southwest direction, 500-1500 m ASL) and hills, while the low LD belts often appear on the plain and basin (valley) between the mountains. But in the western cold and arid regions of China, the relatively high LD belts mostly appear on the Qinghai Lake area of the southern side of Qilian Mountain, Yili River valley, the basin between Tanggula Mountains and Nyainqentanglha. On the coastal land, the high LD centers appear in regions where mountain and hill and large cities are located. This seems to be related to the interaction between the sea-land breeze and mountain-valley wind or city heat island effect, (iii) The China Sea is one of the relatively high LD zones on global oceans. It is very interesting that a high LD belt is located along the Kuroshio area. It is a new fact that the high temperature and hi
基金The National Natural Science Foundations of China under contract Nos40406009,40333030and40706013
文摘The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.
基金provided by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No. KZCX2-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao (Grant No.11-1-4-95-jch)the National Natural Science Foundation of China (Grant No. 40821092)
文摘A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.
文摘Core 255 from the southern Okinawa Trough was selected to monitor the shift of the Kuroshio axis over the last 20 000 years. During the last glacial maximum the Kuroshio axis had ever shifted outside the Okinawa Trough. It entered the Okinawa Trough again at about 6 500 a BP, leading to abrupt increase of sedimentation rate, distinctly coarser sediment and remarkably increased abundance of foraminiferal indicators of the Kuroshio in the core. But, during about 4 000-3 000 a BP the abundance of the Kuroshio indicator Pulleniatina obliquiloculata sharply decreased again, indicating that the Kuroshio axis had ever shifted easterly for a short period or the Kuroshio was weakened and that moment.