A new theoretical method to study super-multiperiod superlattices has been developed.The method combines the precision of the 8-band kp-method with the flexibility of the shooting method and the Monte Carlo approach.T...A new theoretical method to study super-multiperiod superlattices has been developed.The method combines the precision of the 8-band kp-method with the flexibility of the shooting method and the Monte Carlo approach.This method was applied to examine the finest quality samples of super-multiperiod Al_(0.3)Ga_(0.7)As/GaAs superlattices grown by molecular beam epitaxy.The express photoreflectance spectroscopy method was utilized to validate the proposed theoretical method.For the first time,the accurate theoretical analysis of the energy band diagram of super-multiperiod superlattices with experimental verification has been conducted.The proposed approach highly accurately determines transition peak positions and enables the calculation of the energy band diagram,transition energies,relaxation rates,and gain estimation.It has achieved a remarkably low 5%error compared to the commonly used method,which typically results in a 25%error,and allowed to recover the superlattice parameters.The retrieved intrinsic parameters of the samples aligned with XRD data and growth parameters.The proposed method also accurately predicted the escape of the second energy level for quantum well thicknesses less than 5 nm,as was observed in photoreflectance experiments.The new designs of THz light-emitting devices operating at room temperature were suggested by the developed method.展开更多
The strained Si techique has been widely adopted in the high-speed and high-performance devices and circuits. Based on the valence band E-k relations of strained Si/(111)Si1-xGex, the valence band and hole effective m...The strained Si techique has been widely adopted in the high-speed and high-performance devices and circuits. Based on the valence band E-k relations of strained Si/(111)Si1-xGex, the valence band and hole effective mass along the [111] and [-110] directions were obtained in this work. In comparison with the relaxed Si, the valence band edge degeneracy was partially lifted, and the significant change was observed band structures along the [111] and [-110] directions, as well as in its corresponding hole effective masses with the increasing Ge fraction. The results obtained can provide valuable references to the investigation concerning the Si-based strained devices enhancement and the conduction channel design related to stress and orientation.展开更多
In this paper,we analyse the equal width(EW) wave equation by using the mesh-free reproducing kernel particle Ritz(kp-Ritz) method.The mesh-free kernel particle estimate is employed to approximate the displacement...In this paper,we analyse the equal width(EW) wave equation by using the mesh-free reproducing kernel particle Ritz(kp-Ritz) method.The mesh-free kernel particle estimate is employed to approximate the displacement field.A system of discrete equations is obtained through the application of the Ritz minimization procedure to the energy expressions.The effectiveness of the kp-Ritz method for the EW wave equation is investigated by numerical examples in this paper.展开更多
基金The work was supported by the Ministry of Education and Science of the Russian Federation in the framework of experimental research(Nos.075-01438-22-06 and FSEE-2022-0018)the Russian Science Foundation in theoretical research(No.RSF 23-29-00216).
文摘A new theoretical method to study super-multiperiod superlattices has been developed.The method combines the precision of the 8-band kp-method with the flexibility of the shooting method and the Monte Carlo approach.This method was applied to examine the finest quality samples of super-multiperiod Al_(0.3)Ga_(0.7)As/GaAs superlattices grown by molecular beam epitaxy.The express photoreflectance spectroscopy method was utilized to validate the proposed theoretical method.For the first time,the accurate theoretical analysis of the energy band diagram of super-multiperiod superlattices with experimental verification has been conducted.The proposed approach highly accurately determines transition peak positions and enables the calculation of the energy band diagram,transition energies,relaxation rates,and gain estimation.It has achieved a remarkably low 5%error compared to the commonly used method,which typically results in a 25%error,and allowed to recover the superlattice parameters.The retrieved intrinsic parameters of the samples aligned with XRD data and growth parameters.The proposed method also accurately predicted the escape of the second energy level for quantum well thicknesses less than 5 nm,as was observed in photoreflectance experiments.The new designs of THz light-emitting devices operating at room temperature were suggested by the developed method.
基金supported by the National Ministries and Commissions (Grant Nos. 51308040203, 9140A08060407DZ0103, and 6139801)
文摘The strained Si techique has been widely adopted in the high-speed and high-performance devices and circuits. Based on the valence band E-k relations of strained Si/(111)Si1-xGex, the valence band and hole effective mass along the [111] and [-110] directions were obtained in this work. In comparison with the relaxed Si, the valence band edge degeneracy was partially lifted, and the significant change was observed band structures along the [111] and [-110] directions, as well as in its corresponding hole effective masses with the increasing Ge fraction. The results obtained can provide valuable references to the investigation concerning the Si-based strained devices enhancement and the conduction channel design related to stress and orientation.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant No. Y6110007)
文摘In this paper,we analyse the equal width(EW) wave equation by using the mesh-free reproducing kernel particle Ritz(kp-Ritz) method.The mesh-free kernel particle estimate is employed to approximate the displacement field.A system of discrete equations is obtained through the application of the Ritz minimization procedure to the energy expressions.The effectiveness of the kp-Ritz method for the EW wave equation is investigated by numerical examples in this paper.